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Our work aimed to demonstrate the combination of machine learning and graph

theory for the designing of a connectomic biomarker for mild cognitive impairment

(MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based

on source-reconstructed neuromagnetic activity. As ROI representation, we employed

the principal component analysis (PCA) and centroid approaches. As representative

bi-variate connectivity estimators for the estimation of intra and cross-frequency

interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the

correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC)

have been estimated with the three connectivity estimators within the seven frequency

bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how

different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer

(ML-FCG) can give us a different view of the functional interactions across the brain

areas. Finally, we applied machine learning techniques with main scope to build a reliable

connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options:

as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling

estimations. We concluded that edge-weighed feature selection strategy outperformed

the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance

was obtained with the centroid ROI representation and edge-weighted analysis of the

SL-FCG reaching the 98% for the CorrEnv in α1:α2 and 94% for the iPLV in α2.
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Classification performance based on themulti-layer participation coefficient, amultiplexity

index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that

build the multivariate connectomic biomarker in the edge-weighted scenario are located

in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports

the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain

interactions with various connectivity estimators in beamformed recordings.

Keywords: connectomic biomarker, magnetoencephalography, mild cognitive impairment, virtual source activity,

connectome data analysis, multiplexity, cross-frequency-coupling, intrinsic coupling modes

INTRODUCTION

Mild cognitive impairment (MCI) is a brain disease with
both anatomical and functional alterations and first episodes
of cognitive impairments complementary to other factors like
education and age (Petersen et al., 1999). MCI can be seen as
a transitional stage between normal aging and dementia where
a subject can continue his/her daily activities. There are clear
evidences that individuals that are diagnosed as MCI have a
high risk to develop dementia in the next 2–5 years compared
to age-matched population with non-MCI diagnosis (AD; Shah
et al., 2000; Farias et al., 2005). Specifically, MCI subjects with
accumulation of intracellular Tau, medial temporal atrophy and
amyloid deposition are classified clinically as predementia phase
of AD (Albert et al., 2011). All of these pathological biomarkers
cause synaptic disruptions (Braak and Braak, 1991). In the
literature, quite often AD has been named as a dis-connection
syndrome in cellular and macroscale level. This is a wrong term
that makes a lot of neuroscientists in any scale of research around
AD to believe that some brain areas are completely isolated from
the rest of the brain network during AD. Practically, instead
of disconnection syndrome one can use the term “functional
disruption syndrome” (Delbeuck et al., 2003; Arendt, 2009;
Takahashi et al., 2010; Koelewijn et al., 2017). Alterations of
anatomical and functional alterations have been reported during
the MCI pre-AD stage (Pijnenburg et al., 2004; Koenig et al.,
2005; Buldú et al., 2011; Wang et al., 2013).

For a better understanding of how the various anatomical
brain areas communicate, functional connectivity (FC) should
be explored (Friston, 2011). Many resting-state studies using
electroencephalography (EEG) and magnetoencephalography
(MEG) have revealed a decrease in FC especially in α and
β frequencies in MCI patients compared to healthy controls
(Moretti et al., 2008; Gómez et al., 2009; López et al., 2014a;
Cuesta et al., 2015). This functional pattern is close to the one
reported for AD patients (Stam and van Dijk, 2002; Jeong, 2004;

Abbreviations: MCI, Mild cognitive impairment; AD, Alzheimer’s
Disease; FC, Functional Connectivity; EEG, Electroencephalography; MEG,
Magnetoencephalography; CFC, Cross Frequency Coupling; PAC, Phase – to -
Amplitude Coupling; FCG, Functional Connectivity Graph; SL-FCG, Single-Layer
Functional Connectivity Graph; ML-FCG, Multi-Layer Functional Connectivity
Graph; LOOCV, Leave-One-Out Cross-Validation; CorrEnv, Correlation of the
Envelope; iPLV, imaginary part of Phase Locking Value; TSA, Tensor Subspace
Analysis; MPC, Multi-Layer Participation Coefficient; SOBI, Second Order
Statistics; AAL, Automatic Anatomical Labeling; LCMV, Linearly Constrained
Minimum Variance; PCA, Principal Component Analysis; Cen, Centroid.

Stam et al., 2006; Koelewijn et al., 2017), although in a few studies
an increased functional pattern have been revealed in posterior
brain areas (Stam et al., 2006; Alonso et al., 2011).

Deviations of FC from normal have been revealed in MCI
within the default mode network (DMN)with similar disruptions
in anatomical connections (Garcés et al., 2014; Pineda-Pardo
et al., 2014). Only in a few resting-state neuromagnetic studies
where different MCI groups were compared, a specific hyper-
synchronization pattern was untangled in both α and β frequency
bands in MCI subjects that finally transited to AD (López
et al., 2014b). Similar results have been presented to subjects
with an abnormal concentration of phospho-tau protein in
the cerebrospinal fluid (CSF; Canuet et al., 2015). In a recent
multi-center study, the profile of hyper-synchronization was
proved valuable to build a connectomic biomarker with high
classification performance of MCI versus healthy controls
(Maestú et al., 2015).

Most studies that attempted to define a reliable connectomic
biomarker for the detection ofMCI using EEG/MEGFC analyzed
functional interactions between brain activities within the same
frequency band (intra-frequency interactions). Recently, we
designed a novel biomarker based on an EEG-based auditory
oddball paradigm building a multi-parametric biomarker based
on Pz activity and dynamic reconfiguration of cross-frequency
coupling (CFC) (Dimitriadis et al., 2015a). CFC is an integrated
mechanism that increases the timing of synchronization between
distant brain areas oscillating on slow and fast frequencies
and there are many neuroscientific evidences that support its
existence in both resting-state and cognition (Canolty and
Knight, 2010; Palva and Palva, 2011; Buzsáki and Watson, 2012;
Jirsa and Müller, 2013; Dimitriadis et al., 2015b, 2016b). In
a recent study, we demonstrated alterations of specific cross-
frequency coupling patterns due a mnemonic strategy training
protocol in elderly at risk of AD (Dimitriadis et al., 2016d).
We revealed alterations of CFC in dyslexia (Dimitriadis et al.,
2016a) and in mild traumatic brain injury (Antonakakis et al.,
2016, 2017a) using neuromagnetic recordings at resting-state.
For that reason, CFC should be explored in conjunction with
intra-frequency coupling in a single integrated FC graph (SL-
FCG; Dimitriadis et al., 2015b, 2016b; Antonakakis et al., 2016,
2017a; Dimitriadis, 2016a; Dimitriadis and Salis, 2017) and/or in
a multi-layer FCG (ML-FCG; Brookes et al., 2016).

A connectomic biomarker can be designed by adopting
different strategies focusing on graph theory and network
neuroscience. The simplest way is to apply a supervised feature
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selection algorithm using every possible pair of connections
as a single feature and using a number of edges’ weights
as a multiparametric biomarker to evaluate the performance
via a cross-validation procedure such as leave-one-out cross-
validation; (LOOCV) or k-fold CV (Maestú et al., 2015). This
approach can be used on every intra and cross-frequency version
of the FCG and on the multi-layer FCG. Alternatively, the
FCG can be treated as a 2D tensor. In that case, proper
techniques should be adopted tailored to tensorial learning and
classification commonly used in computer vision and image
processing (Dimitriadis et al., 2015b, 2016d; Antonakakis et al.,
2016, 2017a). In the case of the tensorial treatment of a FCG,
in both SL-FCG and ML-FCG formats, two different approaches
can be used. The fully-weighted versions of the FCGs and the
topological filtered versions using a data-driven technique. Here,
we adopted our novel data-driven topological filtering technique
called orthogonal minimal spanning trees (OMST; Dimitriadis
et al., 2017a,c).

Source reconstruction of neuromagnetic recordings demands
the selection of an atlas. The majority of the studies employed
AAL-90 atlas in order to define functional ROIs. However, there
is no study in the literature to report how the representative ROI
time series could affect functional brain networks. Practically,
a number of voxel time series constrained by the boundaries
of atlas template should be proper analyzed in order to get the
characteristic time series per ROI. Here, we tested the most
characteristic, the PCA and the centroid.

In this work, we explored alternative ways that will improve
the discrimination of MCI from age-matched controls using
MEG activity in the source domain. To demonstrate the
whole analysis, we estimated static functional brain networks
from neuromagnetic resting-state recordings (eyes-open). The
strength of functional interactions between two brain sources
was estimated using the imaginary part of phase locking value
(Dimitriadis et al., 2015a, 2016a,b,c,d; Antonakakis et al., 2016,
2017a; Bruna et al., 2017), the original phase locking value and
the amplitude envelope correlation (CorrEnv) (Brookes et al.,
2011a,b) as representative estimators of frequency-resolved FC
for the phase and the amplitude, respectively. Both estimators
have been used to quantify the coupling between every possible
pair of sources with the same frequency content (intra-frequency
interactions) and CFC (Fitzgerald et al., 2013). Here, we
adopted the most characteristic connectivity estimators for both
amplitude and phase domain.

The last year, neuroscience community reported the notion
of multi-layer functional brain networks as a new tool in
network brain science. First preliminary results reported loss
of multiplexity in Alzheimer’s disease (Guillon et al., 2017)
and particularly in hippocampus and posterior hubs (Yu M.
et al., 2017). However, in their analysis, they constructed the
multi-layer functional brain networks only with intra-frequency
coupling functional brain networks. Here, we will test the
performance of multi-layer participation coefficient in MCI
subjects including also cross-frequency layers. It is important to
underline that statistical difference between MPC values doesn’t
mean a high classification performance while the classification
performance in AD is of no clinical value. Our goal must be to

design neuroinformatic tools sensitive to prodromal AD stages
like MCI.

Significantly, there are two basic functional brain networks
that increase their activity during the performance of many
cognitive tasks, the fronto-parietal network (FPN) and the
cingulo-opercular network (CON) (Dosenbach et al., 2006). In
many cases the within-network functional connectivity strength
can predict the cognitive performance (Kelly et al., 2008; Song
et al., 2008) implicating them as part of the core brain system
for task controlling that implies global cognition. Unfolding
the key role of both functional brain networks, it has been
proved that abnormalities in the control supported by these
two networks can lead to mental illness (Cole et al., 2014).
We already know that the pathology of AD is distributed
in high—order cognitive functions including episodic memory
retrieval. Two main networks have been revealed to be linked to
episodic memory retrieval, the fronto-parietal and the cingulo-
opercular (Dhanjal and Wise, 2014). Complementary, medial
temporal lobe activity has been linked to cognitive decline in
MCI (Maestú et al., 2006) while incidental emotional memory
based on emotional pictures triggers parahippocampal brain
areas in a less extent in MCI compared to healthy controls
(Parra et al., 2013). DMN is expected also to be disrupted in
MCI (Garcés et al., 2014). We hypothesize that FPN, DMN,
and CON will contribute to the multivariate connectomic
biomarker for MCI based on neuromagnetic recordings at
resting-state.

Finally, we will show the benefits of constructing a single-
graph by untangling the dominant intrinsic coupling mode per
pair of EEG/MEG sensors/sources (FCGDICM; Antonakakis
et al., 2016, 2017a; Dimitriadis, 2016a,b; Dimitriadis and Salis,
2017). The same procedure will be followed here for both
estimators.

The main goal of this study is to explore the performance
of different analytic strategies of single-layer or multi-layer
representations of functional brain networks. Additionally,
we aim to report how the selection of ROI representation
and the connectivity estimator could alter the performance
of a functional connectomic biomarker. The analysis focuses
on whole-brain static functional brain networks with both
intra and cross-frequency interactions employing representative
connectivity estimators for both amplitude and phase domain.
Our analytics underline the need of further exploration of the
preprocessing pipeline for neuromagnetic recordings tailored to
the definition of a reliable functional connectomic biomarker for
mild cognitive impairment.

The aforementioned different choices in every step of the
analysis (from the extraction of the source time series till
the construction of a static FCG) are demonstrated using
a representative set of healthy controls and MCI subjects.
In Materials and Methods section, we described the data
acquisition, the beamforming analysis to reconstruct the sources,
the MEG analysis, the construction of the various versions
of a FCG and the alternative classification approaches. The
Results section is devoted to describe the results including
classification performance, sensitivity, and specificity of the
alternative choices. Finally, the Discussion section includes

Frontiers in Neuroscience | www.frontiersin.org 3 June 2018 | Volume 12 | Article 306

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dimitriadis et al. A Magnetoencephalographic Connectomic Biomarker for MCI

the discussion of the current research results with future
extensions.

MATERIALS AND METHODS

Subjects and Ethics Statement
Data was obtained for 24 subjects diagnosed with mild cognitive
impairment (MCI) (11 males, age 72.77 ± 3.31 years old, mean
± SD) and 30 healthy controls (13 males, age 72.37 ± 2.63
years old). The MCI group and the control group were recruited
from the Hospital Clínico Universitario San Carlos (Madrid). All
subjects were right handed and native Spanish speakers (Oldfield,
1971). Table 1 summarizes the demographic features and mean
hippocampal volumes of the subjects in both groups.

To explore their cognitive and functional status, all
participants were screened by means of a variety of standardized
diagnostic instruments and underwent an extensive cognitive
assessment, as described in López et al. (2016).

The main criteria for the diagnosis of MCI according to the
National Institute of Aging – Alzheimer Association (NIA-AA)
criteria (Albert et al., 2011; López et al., 2014a,b) are:

(1) self- or informant-reported cognitive complaint;
(2) objective evidence of cognitive impairment;
(3) preserved independence in functional abilities and
(4) not fulfilling the criteria for dementia (McKhann et al.,

2011; López et al., 2014a,b). All of them were categorized
as “MCI due to AD intermediate likelihood.” Besides, they
all presented hippocampal atrophy (see Table 1), which was
measured by magnetic resonance (MRI). According to their
cognitive profile, they were classified as amnestic subtype
(Petersen et al., 1999).

Methods were carried out in accordance with the approved
guidelines and general research practice. The study was approved
by the Hospital Clínico Universitario San Carlos (Madrid) ethics
committee. All participants or their guardians filled and signed a
written informed consent prior to participation.

MEG Acquisition and Preprocessing
Biomagnetic data was acquired using a 306-channel Elekta
Vectorview system (Elekta AB, Stockholm, Sweden) placed
inside a magnetically shielded room (VacuumSchmelze GmbH,
Hanau, Germany) located at the Laboratory of Cognitive
and Computational Neuroscience (Madrid, Spain). Signal was
recorded while the subjects were awake, sitting comfortably and
with their eyes open, while looking at a white fixation cross
projected on a screen.

Prior to the MEG recording, two electrodes were placed above
and below the left eye, in a bipolar montage, in order to acquire
electro-oculographic activity. Four head position indicator (HPI)
coils were placed in the head of the subject, two in the forehead
and two in the mastoids, in order to online estimate the head
position. Position of the three fiducial points, along with the
HPI coils and over 200 evenly spaced points of the head shape
of the subject, were acquired using a three-dimensional Fastrack
digitizer (Polhemus, Colchester, Vermont). The HPI coils were
fed during the whole acquisition, allowing for offline estimation
of the head position.

Four minutes of resting state activity were acquired from each
subject. Data was online filtered between 0.1 and 330Hz, and
digitized using a sampling rate of 1,000Hz. After the acquisition,
recordings were offline processed using the spatiotemporal
extension of the signal separation algorithm (tSSS) (Taulu et al.,
2004). Parameters for the tSSS were a window length of 10 s
and a correlation threshold of 0.9. This algorithm removes
the signals whose origin is estimated outside the MEG helmet,
while keeping intact the signals coming from inside the head.
In addition, the continuous HPI acquisition, combined with
the tSSS algorithm, allowed for the continuous movement
compensation. As result, the signal used in the next steps comes
from a set of virtual sensors whose position remains static respect
to the head of the subject. Those subjects whose movement along
the recording was larger than 25mm were discarded, following
the recommendations of the manufacturer.

Data was examined using the automatic artifact detection
of FieldTrip toolbox (Oostenveld et al., 2011), looking for
ocular, muscular, and jump artifacts. The detected artifacts
were confirmed by a MEG expert, in order to correct both
false positives and negatives. Muscular and jump artifacts were
marked as destructive artifacts, and segments containing them
were completely discarded. On the remaining segments, a blind
source separation algorithm based in second order statistics
(SOBI) was used to obtain statistically independent components.
SOBI components were labeled as oculographic, cardiographic,
noisy components or real data. Artifact-related components were
eliminated, and segments containing persistent oculographic
artifacts were removed. Last, data was segmented in 4-s epochs of
artifact-free data. Subjects with <20 epochs were discarded from
the analysis, due to a low signal to noise ratio.

MRI Acquisition and Processing
A T1-weighted MRI was acquired for each subject in a General
Electric 1.5 T scanner, using a high-resolution antenna and a
PURE filter (Fast Spoiled Gradient Echo sequence, TR= 11.2ms,
TE = 4.2ms, TI = 450ms; flip angle of 12◦; slice thickness

TABLE 1 | Mean ± standard deviation of the demographic characteristics of controls and MCIs.

Number of subjects Gender (M/F) Age MMSE LH ICV RH ICV

Control 30 13/17 72.37 ± 2.63 29.13 ± 0.94 0.0026 ± 0.0003 0.0026 ± 0.0003

MCI 24 12/11 72.67 ± 3.31 26.43 ± 3.22 0.0021 ± 0.0003 0.0022 ± 0.0004

M, males; F, females; MMSE, Mini-Mental State Examination; LH ICV, Left hippocampus normalized by total intracranial volume (ICV); RH ICV, Right hippocampus normalized by ICV.
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FIGURE 1 | From MEG recordings to single-layer and multi-layer FCG. (A) Raw MEG time series recordings and T1 MRI image. (B) Atlas-guided beamforming (here

AAL-90 template). (C) Virtual sensors time series for each brain rhythm. (D) Estimation of the functional connectivity with the CorrEnv based on the Hilbert envelope

and the iPLV based on the Hilbert phase time series. (E) Single-layer FCG: an example from a healthy control subject in the δ frequency band demonstrating both

types of ROI representation for contrast. (F) Multi-Layer FCG: in our study, we used 7 intra-frequency intrinsic coupling modes and 21 inter-frequency coupling modes,

leading to 28 in total. (G) Flattened Multi-Layer FCG: The dimension of the flattened Multi-Layer FCG equals {Coupling Modes × ROI} × {Coupling Modes × ROI},

where in the main diagonal FCG of intra-frequency coupling modes are inserted while in the off-diagonal FCG of inter-frequency coupling modes are encapsulated.

Where Coupling Modes = 28 intra and inter-frequency FCG. PCA, principal component analysis; CENT, centroid; CN, control; MCI, mild cognitive impairment.

of 1mm; FOV of 25 cm, 256 × 256 matrix). MRI images
were segmented in gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF) bone and soft tissue using SPM version
12 (Ashburner and Friston, 2001). A binary mask for the brain
was generated using those voxels whose combined probability of
WM,GM, and CSFwere>0.5. Last, a mesh surface was generated
from the defined mask using FieldTrip.

Source Reconstruction
A volumetric grid was generated for the MNI template, using
a homogenous separation of 1 cm in each direction, with one
source placed in (0, 0, 0) in MNI coordinates. Only sources
inside the brain surface (as defined in the previous section) were
taking in account, resulting in a source model with 2,459 sources,
each consisting in three perpendicular dipoles. Each source was
labeled according to the automatic anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002). The final number of sources
considered, as only cortical ones were used, was 1,467.

The defined grid was transformed to subject space using the
original T1 image. Both the grid and the brain surface were
manually realigned to Neuromag coordinate system using the
three fiducials and the head shape as guides. A lead field was
calculated using a realistic single shell head (Nolte, 2003) as
forwardmodel. The source reconstruction was performed using a
Linearly Constrained Minimum Variance (LCMV) beamformer
(Van Veen et al., 1997) for broadband. The resulting spatial
filters were projected over the maximal radiation direction,

getting only one filter per source. Source-space time series were
reconstructed and grouped according to the atlas, obtaining one
representative time series for area using (1) the PCA of all the
sources in the area or (2) the source closest to the centroid of the
area (CENT).

The whole process from data collection to the extraction of the
filtered time series is briefly depicted in Figures 1A–C.

MEG Analysis
We selected, per each subject, multiple artifact free trials
of 6 s (6,000 samples) after careful visual inspection, giving
32–44 epochs for further analysis. Time-series of neuronal
activation were computed for the seven frequency bands: δ

(0.5–4Hz), θ (4–8Hz), α1 (8–10Hz), α2 (10–13Hz), β1 (13–
20Hz), β2 (20–30), γ1 (30–45Hz) using a third order Butterworth
filter with zero-phase using filtfilt.m function from MATLAB
(Figure 1C).

Functional Connectivity
Imaginary Part of Phase Locking Value (iPLV)
Phase synchrony between two source time series within a
particular frequency band was assessed via the estimates of the
instantaneous phase of the signal. In both task and resting-
state literature, these measures are computed within each trial
and taking average values across all epochs (Lachaux et al.,
1999).
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The complex analytic representations of each signal z(t) is
derived via the Hilbert transform (HT[.]):

z(t) = HT[x(t)] = |z(t)|eiφF(t) = ALF(t)eiφF(t) (1)

Phase consistency between the two signals is measured by means
of both the original definition (Lachaux et al., 1999; Mormann
et al., 2000; Figure 1D) and the imaginary part of PLV (iPLV), as
synchronization indexes to quantify the strength of PAC.

The original PLV is defined as follows:

PLV =
1

T

∣

∣

∣

∣

∣

T
∑

t=1

ei(ϕX(t)−ϕY (t))

∣

∣

∣

∣

∣

(2)

and the imaginary part of PLV as follows:

ImPLV =
1

T

∣

∣

∣

∣

∣

Im

T
∑

t=1

ei(ϕX(t)−ϕY (t))

∣

∣

∣

∣

∣

(3)

The imaginary part of PLV is less susceptible to volume
conduction effects in assessing CFC interactions and was used
in all subsequent analyses. iPLV is less affected by volume
conduction, it could be sensitive in some cases to alterations
in the angle between two time series, which do not necessarily
is related to a PLV change. iPLV is only sensitive to non-zero-
phase lags and is thus resistant to instantaneous self-interactions
associated with volume conductance (Nolte et al., 2004).

iPLV has been used by our group to quantify both intra
and cross-frequency interactions namely the phase-to-amplitude
coupling (PAC) between the phase of the slower rhythm and the
phase of the slower rhythm within the high frequency amplitude
(Dimitriadis et al., 2015a, 2016a,b,c,d; Bruna et al., 2017). See
below the basic preprocessing steps for the estimation of PAC.

Recent studies demonstrated that imaginary part of PLV
(iPLV) can remove artificial interactions but it cannot eliminate
spurious interactions if the true coupling has non-zero phase lag
(Palva et al., 2018; Wang et al., 2018). They finally suggest that
hyperedge bundling can significantly decreases graph noise by
minimizing the false-positive to true-positive ratio (Wang et al.,
2018).

A revisited study for phase-locking bivariate estimators
demonstrated how corrected imaginary part of PLV (ciPLV) can
give results robust to volume conduction and how functional
connectivity graphs can be estimated faster (Bruna et al., 2017).

PAC Estimation: the Algorithmic Steps
Let x(t), t = 1, 2, . . . , T is the virtual time series. Based on
prefiltered versions of this signal, cross-frequency interactions
will be estimated based on form of how the phase of low-
frequency (LF) oscillations modulates the amplitude of high-
frequency (HF) oscillations. Applying a narrowband filtering
with a 3rd order zero-phase Butterworth filter, the two filtered
signals xLF(t) and xHF(t) are first extracted. Then, applying
Hilbert transform (HT[.]) to both filtered signals, the complex
analytic representations zLF(t) and zHF(t) are derived

ZLF(t) = HT[XLF(t)] =
∣

∣ZLF(t)
∣

∣ eiφLF(t) = ALF(t)e
iφLF(t)

ZHF(t) = HT[XHF(t)] =
∣

∣ZHF(t)
∣

∣ eiφHF(t) = AHF(t)e
iφHF(t) (4)

The envelope AHF(t) signal of the higher frequency and the
instantaneous phase ϕ(t) signal of the slower oscillation are
extracted. Next, the envelope of the higher-frequency oscillations
AHF(t) is band-pass filtered within the range of LF oscillations
and the resulting signal undergoes an additional step of Hilbert
transform so as to isolate its phase-dynamics component ϕ′(t),

z′(t) = HT[AHF ,LF(t)] =
∣

∣z′ (t)
∣

∣ eiφHF(t) =
∣

∣z′ (t)
∣

∣ eiφLF(t)→HF(t) (5)

Equation (5) reflects the modulation of HF-oscillations
amplitude by the phase of the LF-oscillations. Finally, the
corresponding time-series will be used to estimate PAC, by
means of the imaginary part of phase-locking (or synchronization
index) technique.

ImPLVLF→HF=
1

T

∣

∣

∣

∣

∣

Im

T
∑

t=1

ei(ϕHF(t)−ϕLF(t))

∣

∣

∣

∣

∣

(6)

Phase-locking value PLV ranges between 0 and 1, with higher
values indicating stronger PAC interactions. Here, we estimated
21 CFC pairs based on the predefined number of frequencies.

Finally, 28 FCGs have been estimated per subject including the
phase coupling of the sources within every frequency and 21 CFC
pairs (for further details see Dimitriadis et al., 2016a).

Amplitude Envelope Correlation
We estimated the amplitude coupling between ROIs based on
the correlations of the envelopes of signals within the same
frequency (Brookes et al., 2012; Hipp et al., 2012) and with
different frequency content (Fitzgerald et al., 2013). Here, 28
FCGs have been estimated per subject, including the AEC of the
sources within every frequency and 21 CFC pairs (Figure 1D).
Here, we used the non-orthogonalized version of AEC.

FEATURE SELECTION AND
CROSS-VALIDATION TAILORED TO EACH
FCG FORMAT

The different coupling modes (28 in total) of each FCG version
can be analyzed as single-layer FCG (SL-FCG), each one with
dimension 90 × 90 (Figure 1E), or as a multi-layer FCG (ML-
FCG) with dimensions {7 × 90} × {7 × 90} (Figures 1F,G). In
the main diagonal of this ML-FCG, blocks of intra-frequency
couplings are tabulated, while in the off diagonal the CFC FCG
are inserted.

Feature Selection and Cross-Validation
Tailored Based on Edge-Weights
Feature Selection
We adopted two different approaches for feature selection
strategy. The first one refers to the selection of the edge weights
as single features, while the second one is the tensorial treatment
of FCG as a 2Dmatrix. For the former, we adopted the Minimum
Redundancy Maximum Relevance (MCFS; Cai et al., 2010)
feature selection, using mutual information as implemented in
the feature selection toolbox (Roffo, 2016; Roffo and Melzi,
2017; Roffo et al., 2017). MCFS was used independently for each
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one of the 28 versions of SL-FCG and for the flattened ML-
FCG. Feature selection strategy was followed at every fold in
the CV phase and prior the training of the model, not prior
to CV, in order to prevent overfitting the model and thereby
improving the generalization of the proposed connectomic
biomarker.

Classification Scheme
For the functional edge feature selection approach, we employed
support vector machines (SVM) with RBF kernel as a proper
classifier. Here, we used two cross-validation schemes: LOOCV
and the 5-fold. Feature selection strategy was followed at every
fold on the training set in both CV schemes. Finally, we selected
those features that were the most frequent across the folds. In
most machine learning approaches, one selects a number of
features or a percentage thereof at every fold for the feature
selection algorithm and the number of features or its percentage
that are more frequent selected across the folds. For example,
we can select 100 features ranked with the feature selection
algorithm and finally we can select the most 30 frequent across
all the folds. This is an important step to first demonstrate
the features and afterward to train the model for external
blind classification. Here, we selected 15 features ranked with
the feature selection algorithm and 15 most common features

across the folds. Finally, sensitivity, specificity and classification
performance will be reported in both validation schemes and
FCG treatment.

Feature Selection and Cross-Validation
Tailored Based on Tensors
We proposed an alternative and more natural formulation of
FCG, which is a 2D matrix. FCG can be seen and properly
handled as tensors. Single-layer FCG (SL-FCG) is naturally a 90
× 90 2D matrix. Multi-layer FCG (ML-FCG) can be flattened
to a 630 × 630 ({7 × 90} × {7 × 90}) 2D matrix. In both
cases it is natural to deal with the matrices as 2D tensors
(Figure 1E).

Feature Extraction
Most brain connectivity studies attempt to classify single-
layer frequency-dependent FCG between two conditions or
two groups by vectorizing the upper triangular (for undirected
connectivity estimators) feature space and treat it as a high-
dimensional space (Pollonini et al., 2010; Shen et al., 2010;
Richiardi et al., 2011). The main drawback of the vectorized
version of a FCG is that destroys the tabular representation
of functional interactions among every pair of brain areas.
FCG can be seen as a second-order tensor. To overcome

FIGURE 2 | Different Representation and analytic schemes of the multiplex functional connectivity graph (FCG). (A) Edge-weight Feature selection approach of the

SL-FCG by first vectorizing each FCG to Nx(N-1)/2 list of functional connections where N denotes the number of ROIs (here N = 90). (B) Edge-weight Feature

selection approach of the ML-FCG by first vectorizing each SL-FCG to Nx(N-1)/2 list of functional connections where N denotes the number of ROIs (here N = 90).

The dimensions of the vectorized version of the ML-FCG is intra-inter coupling modes × Nx(N-1)/2. (C) Tensorial treatment of each SL-FCG in both intra and

inter-coupling modes. (D) Tensorial treatment of the flattened version of ML-FCG where in the main diagonal are tabulated the intra-frequency FCGs and in the

off-diagonal the inter-frequency FCGs. The flattened version of ML-FCG has been used for the estimation of comodulograms by filtering with our OMST data-driven

topological filtering method. (E) Estimation of MPC from the ML-FCG. SL-FCG, single layer-functional connectivity graph; ML-FCG, multi-layer-functional connectivity

graph; MPC, multi-layer participation coefficient.
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the aforementioned limitations, we treated FCGs as tensors
adapting tensor subspace analysis (TSA) (He et al., 2005)
as a representative feature extraction algorithm. Another
popular tensorial treatment of images –FCGs in computer
vision area is the multi-linear PCA (ML-PCA; Lu et al.,
2008). In our formulation, the tensor has dimensions of
(subjects × ROIs × ROIs) as in previous works (Dimitriadis
et al., 2013, 2015b,c, 2016b,c; Antonakakis et al., 2016,
2017a). TSA analysis was performed independently for ROI
representation (PCA/CENT), connectivity estimator (iPLV,
CorrEnv) and intrinsic coupling mode (intra/inter). Figure 2
illustrates the different representation and analytic schemes of the
multiplex functional connectivity graph adapted in the present
study.

Topological Filtering of SL-FCG With OMST
Recently, we published a data-driven topological filtering
approach for brain networks with the scope to reveal the true
network topology from a FCG (Dimitriadis et al., 2017c). Our
algorithm samples the functional connections of a FCG by
iterative rounds of minimal spanning trees (MSTS; Tewarie
et al., 2014) orthogonal to each other (orthogonal minimal
spanning trees - OMST) and attempts to maximize the formula
of global efficiency (GE) vs. the cost of the surviving selected
functional connections by the OMST (Equation 1). At the
1st round the original MST is extracted; at the 2nd round
the 2nd MST is estimated, which is orthogonal to the 1st.
GE, and the cost of the filtered versions of the FCG is
estimated by aggregating the OMST at every round. First,
both measures are estimated based on the 1st MST and
after that we add the OMST to the OMST of the previous
round and both GE and the cost are re-estimated. The
curve of GE-Cost vs. Cost is always positive and gets a
maximum peak value which is the selected number of OMST
rounds.

Equation (3) defines the J function that is maximized in our
OMST topological filtering algorithm

J(OMST) = GE− Cost (7)

We have demonstrated the effectiveness of the OMST algorithm
in large databases of EEG/fMRI recordings (Dimitriadis and
Salis, 2017; Dimitriadis et al., 2017c), in a multi-group MEG
connectivity analysis (Dimitriadis et al., 2017a) and in diffusion-
based structural brain networks (Dimitriadis et al., 2017b). We
topologically filtered each SL-FCG with OMST independently
for ROI representation and connectivity estimator. We called
hereafter the OMST version of each SL-FCG as SL-FCGOMST.

Classification Scheme
For the tensorial treatment of FCG, we used SVM with RBF
kernel as classifier, and the same two cross-validation schemes
as above, LOOCV and 5-fold. Feature selection strategy was
followed at every fold on the training set in both CV schemes.
Finally, sensitivity, specificity and classification performance will
be reported in both validation schemes and FCG treatment.

Topological Filtering of Ml-FCG and
Network Analysis
Topological Filtering of ML-FCG Based on OMST
Prior to network analysis over ML-FCG, we topologically filtered
each ML-FCG with OMST independently for each combination
of ROI representation and connectivity estimator. We called
hereafter the OMST version of each ML-FCG as ML-FCGOMST.

Network Analysis on ML-FCG
After topological filtering, the ML-FCG based on OMST, we can
extract important network metrics. These network metrics can
be the global GE and the cost function of Equation (7), which
assesses how efficiently the different layers (intrinsic coupling
modes) are communicated in every subject. Here, we constructed

FIGURE 3 | Sensitivity, specificity and classification performance of CorrEnv using PCA ROI representation and edge-weights approach of each SL-FCG. (A)

Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP

for each CV scheme. Sen, sensitivity; Spec, specificity; CP, Classification performance.
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the ML-FCG using the 28 single-layer FCG from the 28
different coupling modes. We didn’t take into consideration any
functional inter-layer relationship. Additionally, nodal GE can be
estimated directly on the filtered version of ML-FCG leading to
ROIs = 630 values per subject that can enter in a classification
scheme as with the edge weights (see previous sections). Here,
we estimated the multi-layer version of participation coefficient
(MPC), which quantifies the importance of every ROI across the
different layers. We adapted the multi-participation coefficient
MPCi in order to estimate the importance of every ROI
across the ML-FCG (Battiston et al., 2014). Brain ROIs with
high MPC i are characteristic central hubs of the ML-FCG.

The global MPC is given by the average of the MPC i

values:

MPC =
1

n

N
∑

i=1

MPCi =
1

n

N
∑

i=1

M

M − 1

[

1−
∑

λ

(NLPi
[λ])

2

]

(8)

where stands (NLPi[λ]) = ki
[λ]/oi for node-degree layer

proportion, which quantifies the importance of a node in a single-
layer or across layers. MPC tends to be 0 when a ROI has
more connections within one layer while tends to 1 when a
ROI distributes their connections across the layers. Here, we

FIGURE 4 | Sensitivity, specificity, and classification performance of iPLV using centroid ROI representation and edge-weights approach of each SL-FCG. (A)

Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP

for each CV scheme. Sen, sensitivity; Spec, specificity; CP, classification performance.

FIGURE 5 | Network topology of the selected edge-weighted features using the CorrEnv connectivity estimator for β1:β2 and α1:α2. The two network topologies

differ on their ROI representation approach. (A) PCA ROI representation for β1:β2. (B) Centroid ROI representation for α1:α2. The 90 ROI are illustrated circularly with

45 per hemisphere (left – right semi-circular distributions).
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used the OMST filtered versions of the 28 layers (21 intra and
7 inter-frequency FCG).

Comodulograms Derived From the Filtered ML-FCG
The topological filtering of ML-FCG with OMST algorithm
(ML-FCGOMST) selects a specific number of connections
that maximize Equation (7). These connections belong to
specific layers of the ML-FCG that could be either intra or
inter-frequency FCG. By counting the number of selected
functional connections at every layer and dividing by their
total number, we can estimated the so-called comodulograms.
These comodulograms tabulate the percentage (probability) of

distribution of the OMST-based connections across the different
layers (7 for intra and 21 for inter-frequency coupling modes).
We estimated the derived comodulograms as group-averaged for
both ROI representations and connectivity estimators.

MATLAB Code and Reproducibility of the
Results
The MATLAB code (MATHWORKS, R2017a), the raw time
series and the .mat files with the static functional networks can
be downloaded by the figshare site. We uploaded all the datasets
under the project with the following name:

FIGURE 6 | Sensitivity, specificity and classification performance of iPLV using PCA ROI representation and edge-weights approach of each SL-FCG. (A) Sensitivity,

specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP for each CV

scheme. Sen, sensitivity; Spec, specificity; CP, classification performance.

FIGURE 7 | Sensitivity, specificity and classification performance of iPLV using centroid ROI representation and edge-weights approach of each SL-FCG. (A)

Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP

for each CV scheme. Sen, sensitivity; Spec, specificity; CP, classification performance.
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“CONNECTOMIC_BIOMARKER_MCI_MEG” project in
the following links:

1. Scripts: https://figshare.com/articles/MATLAB_CODE/
6127298
doi: 10.6084/m9.figshare.6127298

2. Dataset part I (Controls):
https://figshare.com/s/71a5fb9043235740a6a7
doi: 10.6084/m9.figshare.6210158

3. Dataset part II (MCI):
https://figshare.com/s/9660b976e4138853d845
doi: 10.6084/m9.figshare.5858436

4. Pre-computed Intra and Inter-Frequency Functional Brain
Networks:

a. Healthy Controls:
https://figshare.com/articles/Pre-computed_Functional_
Brain_Networks_for_Healthy_Controls/6126866
doi: 10.6084/m9.figshare.6126866

b. MCI:
https://figshare.com/articles/Pre-computed_Functional_
Brain_Networks_for_MCI/6127088
doi: 10.6084/m9.figshare.6127088

There is a memo file in the subfolder
. . . \code\from_raw_to_sources\data\from_sources_to_fcgs

\code
called “memo_how_to_run_the_code.m” where one can follow

the instructions step by step tp reproduce Figures 3–14 and
Tables 2–7 and also the Supplementary Material based on

FIGURE 8 | Network topology of the selected edge-weighted features using the iPLV connectivity estimator for θ:β1 and α2 intra-frequency coupling. The two

network topologies differ on their ROI representation approach. (A) PCA ROI representation for θ:β1. (B) Centroid ROI representation for α2. The 90 ROI are illustrated

circularly with 45 per hemisphere (left – right semi-circular distributions).

FIGURE 9 | Sensitivity, specificity and classification performance of CorrEnv using PCA ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity,

specificity and classification performance for the LOOCV and (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec,

specificity; CP, classification performance.
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FIGURE 10 | Sensitivity, specificity and classification performance of CorrEnv using Cent ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity,

specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec, specificity;

CP, classification performance.

FIGURE 11 | Sensitivity, specificity and classification performance of iPLV using PCA ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity,

specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec, specificity;

CP, classification performance.

PLV connectivity estimator. Running the first lines of code,
one can regenerate the source time series or can jump
up to the next part of the code using the pre-computed
functional brain networks. Further instructions are given in the
“memo_how_to_run_the_code.m”

RESULTS

Classification Performance Based on
Edge–Weights in SL and ML FCG
Classification Performance Based on SL-FCGCorrEnv

Figures 3, 4 illustrate the sensitivity, specificity and classification
performance of CorrEnv using PCA and centroid ROI
representation, correspondingly. The best performance for

PCA representation was succeeded in θ:β2 for LOOCV (64%)
and in β1:β2 for the 5-fold CV (72%). For the centroid
representation, the best performance for LOOCV was succeeded
in δ:θ (70%) and in α1:α2 for the 5-fold CV (98%). Obviously,
the ROI representation alters the classification performance
favoring the combination of centroid representation for CorrEnv
estimator. Additionally, the CV scheme is of paramount
importance for the validation of the proposed connectomic
biomarker, where higher values were obtained using 5-fold
CV.

Figure 5 illustrates the different network topology of the
selected edge-weighted features in β1:β2 / α1:α2 cross-frequency
FCG based on both ROI representation schemes for the
CorrEnv. Both PCA/Centroid ROI approach reveal frontal,
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FIGURE 12 | Sensitivity, specificity and classification performance of iPLV using Centroid ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity,

specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec, specificity;

CP, classification performance.

FIGURE 13 | Group-averaged comodulograms derived from ML-FCGCorrEnv.

(A) PCA ROI representation. (B) Centroid ROI representation. PD, probability

distribution.

parietal, bilateral parietal connections involving also left
precuneus (Figure 5A). Centroid ROI scheme revealed bilateral
temporo-parietal hemispheric connections, fronto-parietal,
frontal connections involving right precuneus that improved the
classification performance between the two groups (Figure 5B).

Classification Performance Based on SL-FCGiPLV

Figures 6, 7 illustrate the sensitivity, specificity and
classification performance of iPLV using PCA and centroid
ROI representation, respectively. The best performance for PCA
representation was found in α2:γ for LOOCV (73%) and in θ:β1
for the 5-fold CV (70%). For the centroid representation, the best
performance for LOOCV was in α1:β1 (75%) and in α2 for the

FIGURE 14 | Group-averaged comodulograms derived from ML-FCGiPLV.

(A) PCA ROI representation. (B) Centroid ROI representation. PD, probability

distribution.

5-fold CV (94%). Obviously, the ROI representation alters the
classification performance favoring the combination of centroid
representation for iPLV connectivity estimator. Additionally, the
CV scheme is of paramount importance for the validation of
the proposed connectomic biomarker, where higher values were
obtained using 5-fold CV.

The classification performance of iPLV outperformed the
performance of PLV favoring the use of imaginary part of PLV
(see section 2 in Supplementary Material and Figures S1, S2).

Figure 8 illustrates the different network topologies of
the selected edge-weighted features in θ:β1 intra-frequency
FCG based on PCA ROI representation schemes for the
iPLV and in α2 for centroid ROI representation for the iPLV.
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Bilateral frontal connections, left fronto-temporal, bilateral-
occipital, fronto-parietal and bilateral fronto-parahippo
connections were revealed in PCA ROI representation
(Figure 8A). Bilateral fronto-parietal, left hippo/parahippo
connections with occipital brain areas, left middle
temporal gyrus with precuneus and right temporo-parietal
connections were revealed in centroid ROI representation
(Figure 8B).

Classification Performance Based on Edge –Weights

in ML-FCG
Following the same feature selection and cross-validation scheme
in ML-FCG compared to SL-FCG, we extracted the 15 features
highly consistent detected across the folds. Tables 2, 3 tabulate
the sensitivity, specificity and classification performance of
both connectivity estimators in both ROI representations. The
classification performance was superior for the iPLV compared
to CorrEnv reaching the 87% for the former compared
to 55% for the latter which demonstrates the difficulty of
merging the edge-weights features from SL-FCG to a ML-FCG.
The classification performance of iPLV outperformed the
performance of PLV favoring the use of imaginary part of PLV
(see section 3 in Supplementary Material and Table S1).

Classification Performance Based on the
Tensorial Treatment of SL-FCG
In both SL-FCG and ML-FCG formats, we extracted 6 features
per dimension of the FCG which means 6 × 6 = 36 features per
FCG. In both cases, the FCG were first topological filtered via the
OMST filtering scheme.

Classification Performance Based on Tensorial

Treatment of SL-FCGCorrEnv

Figures 9, 10 illustrate the sensitivity, specificity and
classification performance of CorrEnv using PCA and centroid
ROI representation, correspondingly. Both ROI representations
and CV schemes failed to demonstrate high classification
performance in every SL-FCGCorrEnv.

Classification Performance Based on Tensorial

Treatment of SL-FCGiPLV

Figures 11, 12 illustrate the sensitivity, specificity and
classification performance of CorrEnv using PCA and
centroid ROI representation, correspondingly. Both ROI
representations and CV schemes failed to demonstrate high
classification performance in every SL-FCGiPLV. Classification
performance based on SL-FCGPLV was similar to SL-FCGiPLV(see
Supplementary Material in section 4 and Figures S4, S5).

Classification Performance Based on the Tensorial

Treatment of ML-FCGOMST

We followed the same tensorial feature extraction and cross-
validation scheme in ML-FCG as the ones used for each SL-FCG.
In both cases, the classification performance were on the level of
by chance (50%), which demonstrates the difficulty of merging
the edge-weights features from SL-FCG to a ML-FCG. In both
estimators (see Tables 4, 5), the classification performance were

TABLE 2 | Sensitivity, Specificity, and Classification Performance of edge-weights

in ML-FCGCorrEnv using the two different ROI representations (PCA and CENTroid)

and two cross-validation schemes (Leave-one out cross validation and 5-fold).

Sensitivity Specificity Classification accuracy

PCA LOOCV 0.43 0.37 0.40

5-FOLD 0.63 ± 0.16 0.33 ± 0.15 0.50 ± 0.09

CENT LOOCV 0.60 0.29 0.46

5-FOLD 0.70 ± 0.26 0.51 ± 0.29 0.60 ± 0.16

TABLE 3 | Same as in table 2 but for ML-FCGiPLV.

Sensitivity Specificity Classification Accuracy

PCA LOOCV 0.50 0.20 0.37

5-FOLD 0.63 ± 0.19 0.40 ± 0.28 0.53 ± 0.11

CENT LOOCV 0.70 0.50 0.61

5-FOLD 0.73 ± 0.13 0.46 ± 0.08 0.61 ± 0.18

TABLE 4 | Sensitivity, specificity and classification performance of the tensorial

treatment of ML-FCGCorrEnv using two ROI representation and two

cross-validation schemes.

Sensitivity Specificity Classification accuracy

PCA LOOCV 0.70 0.00 0.38

5-FOLD 1.00 ± 0.00 0.00 ± 0.00 0.55 ± 0.02

CENT LOOCV 0.86 0.04 0.50

5-FOLD 1.00 ± 0.00 0.00 ± 0.00 0.55 ± 0.02

similar compared to each SL-FCG using the tensorial treatment
of the FCG but our results were too low compared to the
edge-weights approach. Classification performance based onML-
FCGPLV was similar to ML-FCGiPLV and to ML-FCGCorrEnv (see
Supplementary Material in section 5 and Table S2).

Network Analysis and Comodulograms of
ML-FCGOMST

Network Analysis of the ML-FCGOMST

We estimated MPC on the ML-FCGOMST based on the degree
of each node at every single layer. Across both connectivity
estimators, ROI representation and cross-validations schemes,
the best performance was above by chance (Tables 6, 7). The
common selected feature across ROI representation and cross-
validation scheme for iPLV estimator was the left superior
frontal gyrus while for CorrEnv were the left inferior parietal
lobule, the left paracentral lobule and left temporal superior
gyrus. Classification performance and specificity based on MPC
extracted from ML-FCGPLV was lower compared to both ML-
FCGiPLV and to ML-FCGCorrEnv while sensitivity was higher (see
Supplementary Material in section 6.1 and Table S3).

Comodulograms of the ML-FCGOMST

Figures 13, 14 illustrate the group-averaged comodulograms for
CorrEnv and iPLV correspondingly. Each 2D plots demonstrate
the probability distribution of selected edges via the OMST
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TABLE 5 | Same as in table 4 but for ML-FCGiPLV.

Sensitivity Specificity Classification accuracy

PCA LOOCV 0.90 0.04 0.51

5-FOLD 1.00 ± 0.00 0.09 ± 0.12 0.59 ± 0.07

CENT LOOCV 1.00 0.00 0.55

5-FOLD 1.00 ± 0.00 0.00 ± 0.00 0.55 ± 0.02

TABLE 6 | Sensitivity, specificity and classification performance of MPL estimated

over the ML-FCGCorrEnv using two ROI representation and two cross-validation

schemes.

Sensitivity Specificity Classification accuracy

PCA LOOCV 0.33 0.29 0.31

5-FOLD 0.63 ± 0.19 0.38 ± 0.16 0.52 ± 0.15

CENT LOOCV 0.60 0.66 0.62

5-FOLD 0.63 ± 0.19 0.38 ± 0.16 0.52 ± 0.15

TABLE 7 | Same as in table 6 but for ML-FCGiPLV.

Sensitivity Specificity Classification accuracy

PCA LOOCV 0.76 0.41 0.61

5-FOLD 0.66 ± 0.21 0.37 ± 0.28 0.53 ± 0.18

CENT LOOCV 0.66 0.16 0.44

5-FOLD 0.66 ± 0.21 0.37 ± 0.28 0.53 ± 0.18

filtering approach across the multi-layer. The in-diagonal cells
in comodulograms keep the PD of the functional connections
within each layer (intra-frequency coupling) while the off-
diagonal cells keep the PD of the functional connections between
the layers (cross-frequency couplings). Even though it is not clear
from the color-coded, there are on average 8 connections between
every pair of δ modulator with the rest of modulated frequencies
in every case (ROI representations × connectivity estimators).
It is obvious in all cases (ROI representation × connectivity
estimators) that the basic modulating frequency is the δ brain
rhythm (Figures 13A, 14). δ is the modulating frequency that
serves as central hub that connects the multi coupling modes
layers of the ML-FCG. PD ROI representation didn’t affect the
contribution of intra/inter frequency-coupling modes in both
CorrEnv and iPLV connectivity estimators.

DISCUSSION

Here, we demonstrated a framework to build a highly efficient
connectomic biomarker for a brain disease (here, MCI). The
whole research is novel and unique, attempting to reveal the
difficulties and the pitfalls of analyzing neuroimaging recordings
with main scope to build a connectomic biomarker.

The whole analysis focused on a static functional connectivity
analysis at the source level after beamforming MEG resting-
state activity in healthy controls and MCI subjects. We adopted
the well-known AAL template with 90 ROIs that represent the

nodes of the FCG. Two different preprocessing choices in ROI
representation were used, the PCA and the centroid approach.
For functional connectivity estimators, we employed CorrEnv
and iPLV. Both estimators were adopted for the construction of
intra and inter-frequency coupling modes FCG. Going one step
further, the different versions of FCG were analyzed as a SL-
FCG and as a ML-FCG. For the construction of a high efficient
connectomic biomarker, we followed two different scenarios
in both SL-FCG and ML-FCG. Functional connections in the
tabulated FCG were further analyzed as single edge-weighted
features and the whole FCG as a 2D tensor. In the former case,
the original FCG was treated in the fully-weighted versions while
in the latter case, we first filter both SL-FCG and ML-FCG via
OMST data-driven topological filtering approach (Dimitriadis
et al., 2015a, 2017a,b; Dimitriadis and Salis, 2017). Finally,
we applied a network analysis on the filtered version of ML-
FCGOMST to reveal the patterns of dominant intrinsic coupling
modes of each group and the efficiency of the communication
across the multi-layers.

The results of the present study can be summarized as follow,
based on the classification performance of the 5-fold CV scheme:

1. Edge-weighed feature selection strategy outperformed the
tensorial treatment of SL-FCG and ML-FCG

2. Based on CorrEnv, the highest CP (98%) was obtained using
centroid ROI representation in α1:α2 FCG

3. Based on iPLV, the highest CP (94%) was obtained using
centroid ROI representation in α2 FCG

4. ROI representation affects the topology of the selected edge-
weights features in both connectivity estimators (Figures 5,
8)

5. Centroid ROI representation outperforms PCA in both
connectivity estimators

6. Edge-weighted feature selection in ML-FCG favors the iPLV
estimator over CorrEnv but the CP were too low.

7. Classification performance based on MPC with both
connectivity estimators are slightly above by chance (52%)

8. Imaginary part of PLV outperformed PLV in every experiment
performed in the current study supporting further its use as a
valuable connectivity estimator

The network topology of the edge-weighted feature selection
approach revealed different patterns according to the ROI
representation and the connectivity estimator. Regarding
CorrEnv, the best performance for PCA representation was
succeeded in θ:β2 for LOOCV (64%) and in β1:β2 for the 5-fold
CV (72%) (Figure 3). For the centroid representation, the best
performance for LOOCV was succeeded in δ:θ (70%) and in
α1:α2 for the 5-fold CV (98%) (Figure 4).

Figure 5 illustrates the different network topology of the
selected edge-weighted features in β1:β2 / α1:α2 cross-frequency
FCG based on both ROI representation schemes for the
CorrEnv. Both PCA/Centroid ROI approach reveal frontal,
parietal, bilateral parietal connections involving also left
precuneus (Figure 5A). Centroid ROI scheme revealed bilateral
temporo-parietal hemispheric connections, fronto-parietal,
frontal connections involving right precuneus that improved the
classification performance between the two groups (Figure 5B).
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In contrast, the best performance for PCA representation
was found in α2:γ for LOOCV (73%) and in θ:β1 for the
5-fold CV (70%) (Figure 6). For the centroid representation,
the best performance for LOOCV was in α1:β1 (75%) and in
α2 for the 5-fold CV (94%) (Figure 7). Obviously, the ROI
representation alters the classification performance favoring the
combination of centroid representation for iPLV connectivity
estimator. The classification performance of iPLV outperformed
the performance of PLV favoring the use of imaginary part of PLV
(see section 2 in Supplementary Material and Figures S1, S2).

Figure 8 illustrates the different network topologies of the
selected edge-weighted features in θ:β1 intra-frequency FCG
based on PCA ROI representation schemes for the iPLV and
in α2 for centroid ROI representation for the iPLV. Bilateral
frontal connections, left fronto-temporal, bilateral-occipital,
fronto-parietal and bilateral fronto-parahippo connections were
revealed in PCA ROI representation (Figure 8A). Bilateral
fronto-parietal, left hippo/parahippo connections with occipital
brain areas, left middle temporal gyrus with precuneus and right
temporo-parietal connections were revealed in centroid ROI
representation (Figure 8B).

Of paramount important is the connection between left
precuneus and left superior occipital pole (Figure 8B). A recent
study using fMRI showed the effect of hippocampus’ functional
connections in episodic memory for MCI subjects (Papma et al.,
2017). Both schemes revealed a bilateral parietal connection with
the involvement of precuneus with post cingulum (Figure 8A)
andwith frontal medial orbital (Figure 8B). Another recent study
using rs-fMRI recordings and seed-based FC analysis revealed
the significant role of precuneus as a hub area where its pattern
of connections is altered in MCI and AD subjects (Yu E. et al.,
2017).

The proposed multivariate connectomic biomarker for MCI
based on beamformed activity at resting-state and the edge-
weighted scenario (Figures 5–8) was built with functional
connections that are located between and within ROIs part of
default-mode, fronto-parietal, and cingulo-opercular network.
Our results further support the significant role of these three
functional brain networks in both healthy and disease conditions
(Cole et al., 2014; Sheffield et al., 2015).

We reported higher classification performance based on iPLV
compared to PLV (Supplementary Material). Recent studies
demonstrated that imaginary part of PLV (iPLV) can remove
artificial interactions bu it cannot eliminate spurious interactions
if the true coupling has non-zero phase lag (Palva et al., 2018;
Wang et al., 2018). They finally suggest that hyperedge bundling
can significantly decreases graph noise by minimizing the false-
positive to true-positive ratio (Wang et al., 2018).

A recent study using resting state MEG recordings in controls
and AD patients reported the diagnostic power of MPC derived
from multi-layer FCG. The multi-layer graph consisted only on
intra-frequency coupling modes, while the different layers were
artificially linked with connections between homolog rain ROIs.
They gave an increased classification accuracy of 74% and a
sensitivity of 80% based on iPLV (Guillon et al., 2017). Here
using 28 layers of intra and inter-frequency coupling FCG, the
best performance for the MPC was obtained using the CorrEnv

with both ROI representation reaching the 64% with 83% of
sensitivity.

Recently, we introduced the notion of integrated FCG (I-
FCG) where at every pair of nodes, we assigned a dominant
coupling mode across both intra and inter-frequency couplings.
The whole procedure has demonstrated its effectiveness in both
static and dynamicM/EEG networks in healthy controls, dyslexia
and mild traumatic brain injury (Dimitriadis et al., 2015b, 2016b;
Antonakakis et al., 2016, 2017a; Dimitriadis, 2016a; Dimitriadis
and Salis, 2017). The whole approach used surrogate analysis and
Bonferroni correction in order to uncover the dominant coupling
mode per pair of ROI. This I-FCG can be seen as a single-
layer version of the ML-FCG where we keep both the weights
and the preferred coupling mode. Due to limitations of running
the scripts by the reviewers for evaluation, we excluded it for
demonstration but we are in preparation of new manuscripts
based on the same cohort in order to include I-FCG and
surrogate analysis to the whole pipeline.

We estimated for both intra and inter-frequency coupling
two well-known estimators: the CorrEnv and iPLV. In the
special case of CFC, we estimated the popular PAC using iPLV
where the phase of the low frequency rhythm modulates the
amplitude of the higher frequency oscillation (Canolty and
Knight, 2010; Dimitriadis et al., 2015a, 2016a,d; Antonakakis
et al., 2016, 2017a,b; Dimitriadis and Salis, 2017). Human
spontaneous activity is shaped by the CFC that coordinates the
activity between distant and local brain areas that function on
their preferred oscillations (Florin and Baillet, 2015). PAC has
been reported in many conditions and for many cross-frequency
pairs like in δ:δ (Lakatos et al., 2005), δ:α (Ito et al., 2013), δ:β
(Nakatani et al., 2014), δ:γ (Szczepanski et al., 2014), θ:α (Cohen
et al., 2009), θ:β (Cohen et al., 2009; Nakatani et al., 2014), θ:γ
(Dürschmid et al., 2013; Florin and Baillet, 2015), α:β (Sotero
et al., 2015), α:γ (Spaak et al., 2012), and β:γ (de Hemptinne et al.,
2013). Although in many experimental studies, authors focused
on only one cross-frequency pair, the majority of them can be
detected simultaneously in a single condition (Sotero et al., 2015).

By integrated both intra and the various inter-frequency
coupling modes into a static and dynamic FCG is of paramount
importance. In our previous studies, we demonstrated also how
comodulograms of the dominant intrinsic coupling modes can
discriminate healthy controls from disease groups in both static
and dynamic FCG (Dimitriadis et al., 2010, 2015a, 2016a,d;
Antonakakis et al., 2016, 2017a,b; Dimitriadis and Salis, 2017).
However, it is significant to analyse intra and PAC interactions via
multivariate approach in order to reveal the indirect interactions
and the direction of the information transmission between the
brain areas. We have already started to work on this approach
and we will report our findings on the same open dataset using
multivariate information theoretic tools (Lizier et al., 2011).

Multiplexity of human brain dynamics is a recent hot
topic in neuroscience. Recent advances in both structural and
functional neuroimaging integrated neuroscience, informatics,
mathematics and physics into a single goal, how the brain
functions in healthy states and how dysfunctions in various
diseases. Here, we accessed the multiplexity of human brain
via static functional brain networks across various coupling
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modes. We built multi-layer FCG employing both intra and
cross-frequency coupling FCG with main scope to estimate
the complexity of human brain activity across spatial and
functional scales. We estimated the MPC as a network metric
that quantifies the importance of every ROI across the multi-
layers. The estimation of MPC based on ML-FCG with no
inter-layer connections (Tables 6, 7; Guillon et al., 2017; Yu M.
et al., 2017). Complementary, a flattened ML-FCG version has
been constructed with connections between the intra-frequency
layers the so-called cross-frequency coupling estimates. Using
OMST filtering scheme, we selected the significant trend of
dominant coupling modes across both spatial and frequency
scales illustrated in the comodulograms (Figures 13, 14). Both
techniques are important to be added in the alternative network
analysis tools for estimating the multiplexity of human brain
dynamics.

The aforementioned statement is applicable in analyzing the
intra and inter-frequency interactions between the amplitudes
of the source time series. Multivariate information theoretic
connectivity tools will be applied from our team complementary
to the phase interactions. Our attempt was to demonstrate
the difference, the commonalities and the complementarity of
the basic connectivity estimators in both amplitude and phase
domain.

A recent study concluded that the network topology, the CFC
and the intra-frequency interactions shaped the PAC generation
in a cortical column using a novel neural mass model (Sotero,
2016). Here, in order to reduce the computational time needed to
run the pipeline from the reviewers in order to evaluate the whole
analysis, we did not run surrogate analysis. Surrogate analysis is
important to statistical filter out the spurious connections (Aru
et al., 2015) and to reveal the true connections prior to the
topological filtering OMST scheme.

Finally, we would like to state that a connectomic biomarker
could be build by integrating SL or ML-FCG from different
connectivity estimators especially if they estimate functional
connectivity in amplitude and phase domains.

Limitations of the Current Analysis
One of the basic limitations of this study is the lack of surrogate
analysis. We have already reported that surrogate analysis
tailored to each connectivity estimator and interactions (intra
and inter) should be reported in every brain connectivity study.
In the case of searching the best features—functional weights
that increase the classification performance between two groups,
we assumed that all the connection exist in every single subject.
This is not true, yet there are many studies that report their
results under this assumption. Surrogate analysis can be seen as a
statistical filtering (pruning) of the whole network, whereby only
the significant links at a certain threshold are preserved. After
first applying the statistical filtering (surrogates) and topological
filtering (e.g., OMST), the true network topology can emerge
from each of the subject-specific FCG. This practically means that
only a small amount of connections co-exist across our dataset.
In that case, two options can be used to design a connectomic
biomarker. The first one is to handle the FCG as a tensor, as we
demonstrated here, and to estimate nodal network metrics such

as global/local efficiency. In the second case, our features will be
the nodal network metrics instead of the single-edge weights.

In previous studies, we applied the tensorial extraction
algorithm on the original MEG sensor space and we reported
significant results. However, here the tensorial treatment of the
FCG in both the single and multi-layer options did not work
properly. This misclassification of the tensors could be attributed
to many pitfalls. Here, we used a fixed anatomical template for
every subject in both groups, which is common in functional
neuroimaging while the number of ROIs maybe too low to
support the computational power of the FCG-based approach.
Another interpretation could be the missing of surrogate analysis
and the use of bivariate connectivity estimators.

It is important to stress the need to evaluate the proposed
algorithmic scheme in a second blind dataset and in a follow—
up cohort with MCIs that are either stable or progressed to AD
(López et al., 2014b, 2016). Additionally, a reliable connectomic
biomarker should be tested across multi-site recordings (Maestú
et al., 2015), most desirably including different MEG systems
(CTF - ELEKTA).

CONCLUSIONS

We demonstrated how different preprocessing steps in the
definition of the representative time series of each ROI, the
selection of a connectivity estimator and the formulation of the
FC graph could alter the outcome of the design of a connectomic
biomarker. We demonstrated two different approaches to study
the functional brain network, as a vector of single functional
weights or as a unit – 2D matrix, where more tools should
be added to our list such as tensorial extraction algorithms.
Additionally, it is always important, whenever possible, to
evaluate the proposed connectomic biomarkers in a second
blind dataset, in order to increase the generalization of the
proposed algorithm and to test it across multi-site cohorts with
the same or different MEG system. Only under this umbrella of
effort, a reliable clinically-usable connectomic biomarker can be
proposed in the neuroscience community.

We strongly encouraged the neuroscience MEG community
to add on their analysis different ROI representation,
connectivity estimators and also both intra and cross-frequency
coupling mechanisms should be included. The take home
message from this seminar work is that centroid outperformed
PCA independently of the connectivity estimator while the
treatment of every edge as a unit compared to the tensorial
treatment gave better results. We hypothesize that the number
of ROIs using the AAL probably are not enough to give good
performance for the tensorial treatment of functional brain
networks and a more fine-grained parcellation scheme should
be incorporated in the pipeline. Finally, we reported results
from the famous MPC where two research groups revealed
significant differences between healthy controls and AD group.
However, the performance of MPC in our case employing
also cross-frequency layers was lower than the edge-weighed
approach. Finally, dynamic network connectivity analysis could
reveal more discriminative profiles of both groups that can
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better discriminated compared to static connectivity analysis and
also validated in external blind datasets across sites and MEG
scanners.
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