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Humans perform remarkably well in many cognitive tasks including pattern recognition.

However, the neuronal mechanisms underlying this process are not well understood.

Nevertheless, artificial neural networks, inspired in brain circuits, have been designed

and used to tackle spatio-temporal pattern recognition tasks. In this paper we present

a multi-neuronal spike pattern detection structure able to autonomously implement

online learning and recognition of parallel spike sequences (i.e., sequences of pulses

belonging to different neurons/neural ensembles). The operating principle of this structure

is based on two spiking/synaptic neurocomputational characteristics: spike latency,

which enables neurons to fire spikes with a certain delay and heterosynaptic plasticity,

which allows the own regulation of synaptic weights. From the perspective of the

information representation, the structure allows mapping a spatio-temporal stimulus into

a multi-dimensional, temporal, feature space. In this space, the parameter coordinate

and the time at which a neuron fires represent one specific feature. In this sense, each

feature can be considered to span a single temporal axis. We applied our proposed

scheme to experimental data obtained from a motor-inhibitory cognitive task. The results

show that out method exhibits similar performance compared with other classification

methods, indicating the effectiveness of our approach. In addition, its simplicity and

low computational cost suggest a large scale implementation for real time recognition

applications in several areas, such as brain computer interface, personal biometrics

authentication, or early detection of diseases.
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1. INTRODUCTION

In recent years there has been an increasing interest in applying
artificial neural networks to solve pattern recognition tasks.
However, it remains challenging to design more realistic spiking
neuronal networks (SNNs) which use biologically plausible
mechanisms to achieve these tasks (Diehl and Cook, 2015).
In sensory systems, the recognition of stimuli is possible by
detecting spike patterns during the processing of peripheral
inputs. Precise spike timings of neural activity have been
observed in many brain regions, including the retina, the
lateral geniculate nucleus, and the visual cortex, suggesting
that the temporal structure of spike trains serves as an
important component of the neuronal representation of the
stimuli (Gütig and Sompolinsky, 2006; Zhang et al., 2016).
Specific neural mechanisms that recognize time-varying stimuli
by processing spiking activity have been an important subject of
research (Larson et al., 2010; Masquelier, 2017). Whereas, some
investigations are oriented to the study of the spike activity of
single neurons, many others consider the timing of spikes across a
population of afferent neurons (Gautrais and Thorpe, 1998; Stark
et al., 2015).

Plasticity regulates the strength in the connection between
neurons. In homosynaptic plasticity the activity in a particular
neuron alters the efficacy of the synaptic connection with
its target. Instead, in heterosynaptic plasticity changes in the
synaptic strength can occur in both stimulated and non-
stimulated pathways reaching the same target neuron. Like
homosynaptic plasticity, heterosynaptic plasticity has two forms:
inhibition and potentiation (Squire, 2013); the latter is not
necessarily restricted to a subset of cells, but it can occur to
many of the neurons in the population (Han and Heinemann,
2013). A number of distinct subtypes of heterosynaptic plasticity
have been found in a variety of brain regions and organisms.
They are associated to different neural processes including the
development and refinement of neural circuits (Vitureira et al.,
2012), extending the lifetime of memory traces during ongoing
learning in neuronal networks (Chistiakova and Volgushev,
2009). Among these, heterosynaptic modulation (i.e., when
the activity of a modulatory neuron induces a change in the
synaptic efficacy between another neuron and the same target
cell Phares and Byrne, 2006) allows that one set of inputs exert
long-lasting heterosynaptic control over another, enabling the
interplay of functionally and spatially distinct pathways (Han and
Heinemann, 2013). Among the various types of heterosynaptic
plasticity, the heterosynaptic form of Spike-Timing-Dependent
Plasticity (STDP) is capturing a lot of interest because recent
works have shown that it is a critical factor in the synaptic
organization and resulting dendritic computation (Hiratani and
Fukai, 2017).

In this paper we introduce a simple but effective network
topology specialized in online recognition of temporal patterns.
The structure is characterized by lateral excitation, i.e., excitatory
connections between neurons that belong to parallel paths, and
is based on two features: heterosynaptic STDP and spike latency.
Neurons dynamics is described using the Leaky Integrate-and-
Fire with Latency (LIFL) model, which is similar to the Integrate

and Fire but supports the spike latency mechanism, extracted
from the more realistic Hodgkin-Huxley (HH) model (Salerno
et al., 2011). The structure maps spatio-temporal stimuli to
specific areas in a temporal, multi-dimensional, feature space. In
addition it is able to self-regulate its weights, allowing the learning
and recognition of multi-neuronal temporal patterns in parallel
spike trains arising from neuronal ensembles. In order to show
the potential of the presented structure, we apply it to a cognitive
task-recognition problem, considering magnetoencephalografic
(MEG) signals of subjects while performing a Go/NoGo task,
and compare it with some typical classification methods. The
test exhibits good classification performance, indicating the
adequateness of our approach.

2. MATERIALS AND METHODS

2.1. Leaky Integrate-and-Fire With Latency
(LIFL) Neuron Model
The LIFL (Cardarilli et al., 2013; Susi, 2015; Acciarito et al., 2017)
is a neuron model similar to the classical Leaky Integrate-and-
Fire (LIF), but characterized by the presence of the spike latency
neurocomputational feature (Izhikevich, 2004; Cristini et al.,
2015; Susi et al., 2016). The spike latency is a potential-dependent
delay time between the overcoming of the “threshold” and the
actual spike generation (Izhikevich, 2004; Salerno et al., 2011).
This feature is important because it allows encoding the strength
of the input in the spike times (Izhikevich, 2007) extending the
neuron computation capabilities over the threshold (e.g., Gollisch
and Meister, 2008; Fontaine and Peremans, 2009; Susi, 2015).
Neurons with such feature are present in many sensory systems,
including the auditory, visual, and somatosensory system (Trotta
et al., 2013; Wang et al., 2013). The LIFL neuron model embeds
spike latency using a mechanism extracted from the more
realistic Hodgkin-Huxley model (Salerno et al., 2011). It is
characterized by the internal state S (representing the membrane
potential),which ranges, for simplicity, from 0 (corresponding to
the resting potential of the biological neuron) to∞.

In its basic implementation, the LIFL model uses a defined
threshold (Sth), a value slightly greater than 1 that separates two
different operating modes: a passive mode when S < Sth, and an
active mode when S > Sth. In the passive mode, S is affected
by a decay, whereas in the active mode it is characterized by a
spontaneous growth. For simplicity, we assume that simple Dirac
delta functions (representing the action potentials) are exchanged
between neurons, in form of pulses or pulse trains.

The LIFL model can be implemented through the event-
driven technique (Mattia and Del Giudice, 2000), which provides
fast simulations (Ros et al., 2006). When the postsynaptic
neuron Nj receives a pulse from the presynaptic neuron Ni, its
internal state is updated through one of the following equations,
depending on whether Nj is in the passive or in the active
mode, as:

SNj = Sp Nj + ANi
· w(Nj,Ni)− Tl , for 0 ≤ Sp Nj < Sth (1)

SNj = Sp Nj + ANi
· w(Nj,Ni)+ Tr , for Sp Nj > Sth (2)
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Sp Nj represents the postsynaptic neuron’s previous state, i.e.,
the internal state immediately before the new pulse arrives.
ANi

represents the amplitude of the generated pulse; w(Nj,Ni)
represents the synaptic weight from neuron Ni to neuron Nj.
The product ANi

· w(Nj,Ni) represents the amplitude of the
post-synaptic pulse arriving to Nj.

Tl, the leakage term, accounts for the underthreshold decay
of S during two consecutive input pulses in the passive mode.
We will consider LIFL basic configuration, i.e., characterized by
a linear subthreshold decay (as in Mattia and Del Giudice, 2000),
where Tl = Ld ·1t, being Ld a non negative quantity called decay
parameter and1t the temporal distance between two consecutive
incoming spikes.

Tr , the rise term, takes into account the overthreshold growth
of S during two consecutive input pulses in the active mode.
Specifically, once the neuron’s internal state crosses the threshold,
the neuron is ready to fire. However, firing is not instantaneous,
but it occurs after a continuous-time delay. This delay time
represents the spike latency, which we call time-to-fire, and is
indicated with tf in our model. tf can be affected by further
inputs, making the neuron sensitive to changes in the network
spiking activity for a certain period, until the actual spike occurs.
S and tf are related through the following relationship, called the
firing equation:

tf =
1

(S− 1)
(3)

Such dependence has been obtained through the simulation of a
membrane patch stimulated by brief current pulses (0.01 ms of
duration) and solving the HH equations (Hodgkin and Huxley,
1952) in NEURON environment (Hines and Carnevale, 1997), as
described in Salerno et al. (2011).

The firing equation is a simple bijective relationship between
S and tf , observed in most cortical neurons (Izhikevich, 2004);
similar behaviors have been found by other authors, such as
Wang et al. (2013) and Trotta et al. (2013), using DC inputs.

The firing threshold is written as:

Sth = 1+ d (4)

where d is a positive value called threshold constant, which fixes
a bound for the maximum value of tf . According to Equation 4,
when S = Sth, tf is maximum, and equals to:

tf ,max = 1/d (5)

tf ,max represents the upper bound of the time-to-fire and is a
measure of the finite maximum spike latency of the biological
counterpart (FitzHugh, 1955).

Under proper considerations (see section 1 of
Supplementary material), it is possible to obtain Tr (rise
term), as follows:

Tr =
(Sp − 1)21t

1− (Sp − 1)1t
. (6)

Sp represents the neuron’s previous state, and 1t is the temporal
distance between two consecutive input pulses. Equation 6

FIGURE 1 | Neural summation and spike generation in a LIFL neuron.

(A) Input/output process scheme; (B) temporal diagram of LIFL operation

(basic configuration), assuming the neuron starts from its resting potential. For

simplicity contributions are supposed to be all excitatory so that each

incoming input causes an instantaneous increase of the internal state. In the

passive mode the neuron is affected by a decay; when S exceeds the

threshold (S = S+) the neuron is ready to spike; due to the latency effect, the

firing is not instantaneous but it occurs after a time tf . Once emitted, the pulse

of amplitude ANj is routed to all the subsequent connections, and then

multiplied by the related weight. In (C) is shown the firing equation, i.e., the

latency curve for the determination of tf from S+(see Salerno et al., 2011). In

this case d is set to 0.04.

allows us to determine the internal state of the postsynaptic
neuron at the time that it receives further inputs during the tf
time window. In Figure 1, the operation of LIFL is illustrated.
Neurons are supposed to interact instantaneously, through the
synaptic weight w(Nj,Ni). Such link element can introduce
amplification/attenuation of the traveling pulse.

The operation of the LIFL model is illustrated in Figure 1.
Note that in this, and following figures, the synaptic weight is
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displayed with rounded rectangles, and identified by its post-
and pre- synaptic neurons respectively. For a given neuron Nj

operating in the active mode, the arrival of new input pulses
updates the time-to fire tf . If no other pulse arrives during
this interval, the output spike is generated and S is reset.
The presented basic configuration of the LIFL model defines
an intrinsically class 1 excitable, integrator neuron, supporting
tonic spiking and spike latency. We also included in the neuron
model the absolute refractory period, for which after the spike
generation, the neuron’s internal state remains at zero for a
period tarp, arbitrarily set. During this period the neuron becomes
insensitive to further incoming spikes.

2.2. Spike-Timing-Dependent Plasticity
(STDP)
STDP is a well-known type of plasticity consisting of an
unsupervised spike-based process that can modify the weights
on the basis of network activity. It underlies learning and
information storage in the brain, and refines neuronal circuits
during brain development (Sjöström and Gerstner, 2010). The
STDP mechanism influences the synaptic weights on the basis
of the difference between the time at which the pulse arrives at
the presynaptic terminal and the time a pulse is generated in the
postsynaptic neuron.

The original STDP behavior (Bi and Poo, 1998) can be
modeled by two exponential functions (Abbott and Nelson,
2000).















1W = A+e
−1T

τ+ , for 1T > 0

1W = 0, for 1T = 0

1W = A−e
1T
τ− , for 1T < 0

(7)

where 1T is the difference between the time at which the
postsynaptic neuron fires (i.e., tpost) and the time at which the
pulse arrives at the presynaptic terminal (i.e., tpre):

1T = tpost − tpre (8)

τ+ and τ− are positive time constants for long-term potentiation
(LTP, Equation 7a) and long-term depression (LTD, Equation
7c), respectively; A+ and A− (positive and negative values,
respectively) are the maximum amplitudes of potentiation and
depression which are chosen as absolute changes, as in other
works (e.g., Acciarito et al., 2017). Then, a weight is increased
or decreased depending on the pulse order (pre-before post-, or
post- before pre-, respectively; see Figure 2).

As explained in section 2.1, in the LIFL model the delay in
generating an output spike (spike latency) depends on the value
of the internal state reached by the neuron. Since the STDP can
modulate the amplitude of the neuron inputs, the combination
of STDP and LIFL makes possible to implement a form of delay
learning (Taherkhani et al., 2015), i.e., themodulation of the delay
to achieve learning.

In this work we will focus on heterosynaptic STDP plasticity,
by which the 1T referred to a given synaptic afferent determines
the modification of other synaptic afferents to the same neuron

(Phares and Byrne, 2006), enabling the interplay of distinct
pathways of the same structure.

2.3. Multi-Neuronal Spike Sequence
Detector
A broad range of literature is aimed at understanding how
animals have the capability to learn external stimuli and
to refine its internal representation. Many of these studies
propose architectures based on delays and coincidence detection
mechanisms (König et al., 1996; Hedwig and Sarmiento-Ponce,
2017).

In a classic pattern recognition problem an object can be
described by a n-dimensional vector (or matrix) where each
component represents an object’s feature. Analogously, in the
neural computation context, an object can be identified by an n-
uple of pulses, where feature attributes are encoded in the times
at which the pulses occur (Susi, 2015). This allows us to map the
classes in a n-dimensional topological space of the internal object
representation (see Figure 3).

We present here a multi-neuronal spike pattern detector
that includes a bio-plausible self-tuning mechanism, which is
able to learn and recognize multi-neuronal spike sequences
through repeated stimulation, without supervision. We term
this neuromorphic structure as Multi-Neuronal spike-Sequence
Detector (MNSD). Through a MNSD we can mediate the
mapping from spatio-temporal stimuli to such temporal feature
space, identifying a class with a specific area, which we call class
hypervolume. In this section we show the operation principles on
which such structure is based.

2.3.1. Structure Description
TheMNSD architecture, represented in Figure 4, is composed of:

• a layer of neurons D1, ...,Dn (termed delay neurons)
which receive the external spikes ESn and are subject
to heterosynaptic STDP interactions between them. For
simplicity we only consider nearest-neighbor interactions
between delay neurons, i.e., each branch can interact with its
neighbors branches only (in order to mimic a layer of adjacent
neurons).

• one target neuron T, which performs the summation of
previous contributions and acts as readout neuron, signaling
the recognition of the sequence.

To facilitate the analysis and to map the spatio-temporal stimuli
in three dimensions we will consider a structure with only three
branches; nevertheless, we can generalize to structures of as
many branches as features of the object we want to classify.
We also consider that the interactions between the neurons are
instantaneous; then the only possible delays in the network are
those produced by the spike latency.

In order to perform the recognition, the structure’s weights
w(Dn,ESn), (i.e., the efficacies of the synapses projecting from
ESn to Dn) are adaptively adjusted on the basis of the specific
mutineuronal spike sequence given at the input. In this way the
target neuron (T) will become active only at the presentation of
such sequence (or similar ones, as we will see in section 2.3.3).
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FIGURE 2 | Scheme of STDP. (A) 1T; (B) Learning window: LTD and LTP curves (in red and green, respectively).

FIGURE 3 | An object characterized by three features can be identified in a

three-dimensional feature space by the arrival times of three input pulses. In

this way, given a multi-neuronal spike sequence as input, the MNSD will

associate it to the represented class whenever the input spikes fall in proper

temporal ranges.

FIGURE 4 | Scheme of the presented structure. The three delay branches,

characterized by the three delay neurons D1, D2, D3, converge to the target

neuron T. Heterosynaptic STDP interactions are permitted by lateral

connections, represented as dotted curves with related synapses.

The necessary condition for T to spike is that S > Sth;
this is made possible by the synchronization of the (excitatory)
contributions coming from the delay branches. Synchronizability

at the target neuron in response to the specific sequence is
progressively obtained through the repeated presentation of
the sequence to the structure, due to the interplay between
the spike latency and the heterosynaptic STDP. Through the
amplitude-time transformation operated by the spike latency
feature it is possibile to obtain synchronization on the target
neuron acting on the amplitude of the pulses at the input of
the delay neurons. The spike latency feature is then fundamental
for the correct operation of the structure (a simple LIF would
not be able to support this mechanism). The interaction
between adjacent branches (lateral excitation) combined with the
hetherosynaptic STDP make it possible w(Dn,ESn) to change
with respect to the difference between their spike times. This
modifies the amplitudes of the contributions in the input of the
different branches, enabling a feedback mechanism to mutually
compensate the differences between the output spike times of
adjacent branches and to produce a synchronous arrival to the
target.

With the aim of better explaining the operation of the
MNSD structure, we initially perform an analysis of the structure
without plasticity (i.e., static analysis). Later, we will include
a (hetero-)synaptic term to show how one branch can adapt
dynamically to reach a downstream spike synchrony with its
neighbor (dynamical analysis). In order to design structures that
are capable to face real problems by operating with this principle,
we will derive the set of relations in sections 2.3.2 and 2.3.3, and
then we tune a MNSD for a specific application (section 3).

2.3.2. Static Analysis
In this section we obtain the conditions that allows T to
generate a spike, without considering the plastic term (i.e., not
considering the dotted connections of Figure 4). The operation
of the structure in the static mode is shown by means of the
temporal diagrams in Figure 5.

The excitatory neurons Dn , present in the afferent branches,
allow to create a transmission delay through the spike latency
mechanism. The operation is based on the fact that the pulses
arriving from the different branches can evoke a spike in T only
if they arrive sufficiently close in time.

In the following we indicate with tinDn the arrival instant of
the external spike ESn and with toutDn the time at which the
output pulse of Dn is generated; 1tinDm ,Dn

represents the time
difference between the pulses afferent to the delay neurons (i.e.,
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FIGURE 5 | Diagram of the operating principle of the structure (static analysis). On the left, desynchronized input pulses are unable to activate the target. Note that

depending on the arrival orders of tin (and tout ), some 1in (and 1out ) can assume negative values (arrow directions are significant). At right, simultaneity condition

allows the target activation. Finally, maximum state SM is represented for both the cases.

tinDn − tinDm ), and 1toutDm ,Dn
the time difference between the

pulses afferent to the target neuron (i.e., toutDn − toutDm ). Let
us consider the amplitude of the pulses. At the input, and to
guarantee the activation of Dn, the following relation has to be
satisfied:

A(ESn) · w(Dn,ESn) ≥ 1+ d (9)

where A(ESn) is the amplitude of the external spike, w(Dn,ESn)
the synaptic weight afferent to Dn, and their product represents
the amplitude of the input pulse arriving to Dn. For simplicity we
consider that:

• neurons are identical, i.e., initialized with the same set of
parameters presented in section 2.1;

• synaptic weights afferent to the target are the same for the three
afferent connections:
w(T,D1) = w(T,D2) = w(T,D3) = w(T,Dn)

• External spikes ES , as well as output pulses, are assumed to
have the same amplitude [A(ESn) = 1]

Then:

w(Dn) ≥ 1+ d (10)

Assuming that the pulses arrive simultaneously at the target
(simultaneity condition), we have that the following relation has
to be satisfied to guarantee the output spike of neuron T:

w(T,Dn) ≥
1+ d

3
(11)

In order to have the target activated with the contribution of all
the three branches (avoiding that the target neuron generates a
spike also for partial sequences that do not exhibit the whole set
of features of our object), we have the following constraint:

w(T,Dn) <
1+ d

2
(12)

Now we introduce the delay times due to the spike latency.
Considering Figure 5, we can write the system of equations that
relates the arrival times of the three contributions to T as:
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{

tf (D1)+ 1toutD1,D2 = 1tinD1,D2 + tf (D2)

tf (D1)+ 1toutD1,D3 = 1tinD1,D3 + tf (D3)
(13)

In order to achieve simultaneous arrival of the pulses to the
target, we should have:

1toutDm ,Dn
= 0. (14)

Then:

{

tf (D1) = 1tinD1,D2 + tf (D2)

tf (D2) = 1tinD1,D3 + tf (D3)
(15)

This means that, for a simultaneous arrival of pulses at the target,
with the above-mentioned restrictions, we should have:

{

1tinD1,D2 = 1
w(D1 ,ES1)−1

− 1
w(D2 ,ES2)−1

1tinD1,D3 = 1
w(D1 ,ES1)−1

− 1
w(D3 ,ES3)−1

(16)

Now we remove the simultaneity condition at the target,
searching for the values of 1tin and w(T,Dn) for which the spike
at the target neuron is still allowed. Under proper considerations
(see section 2 of Supplementary material), we arrive to the
following relations:

• If 1tinD1,D2 and 1tinD1,D3 have concordant sign, then:

max(|1tinD1,D2 −
1

w(D1,ES1)− 1
+

1

w(D2,ES2)− 1
|, |1tinD1,D3

−
1

w(D1,ES1)− 1
+

1

w(D3,ES3)− 1
|) <

2− d

Ld

(17)

• On the contrary, if 1tinD1,D2 and 1tinD1,D3 have discordant
sign, then:

|(1tinD1,D2 −
1

w(D1,ES1)− 1
+

1

w(D2,ES2)− 1
)

−(1tinD1,D3 −
1

w(D1,ES1)− 1
+

1

w(D3,ES3)− 1
)| <

2− d

Ld
(18)

If we aim at recognizing parallel spike trains of greater
cardinality, it is necessary to increase the number of delay
branches, keeping the condition that the contributions have to
arrive simultaneously to the target neuron.

2.3.3. Dynamical Analysis
As alreadymentioned, the operational key of the structure resides
in the interplay of spike latency and plasticity: the delay in
neuronal pathways is due to the spike latency, which in turn
depends on w(Dn,ESn). In addition w(Dn,ESn) is modulated
by the neighbor branch(es) through heterosynaptic plasticity.

FIGURE 6 | Lateral excitatory heterosynaptic junction. The area of synapse

modification is highlighted in yellow.

Therefore, the branch delay is modulated by plasticity. In the
presence of plasticity and under repetitive stimulation, the
structure can progressively self-regulate its weights until the
multi-neuronal spike train synchronizes in the target neuron
(operation mode described in the previous section).

For simplicity, and without loss of generality, we consider
here the effect of a single heterosynaptic connection (the
influence of a single branch on an adjacent one). In the whole
structure, however, each branch acts on its neighbors through
heterosynaptic lateral junctions. This leads to a modification of
the timing of the branch’s pulse in order to converge to the
neuron T temporally closer with respect to their neighbor(s).
Such mechanism is shown in Figure 6 where heterosynapsis
is indicated with a dotted curve and a gray triangle. In this
way the weight w(D2,ES2) is modulated by the time difference
between the output pulse of D2 and the contribution from D1

(i.e., the output pulse ofD1). In the case of generic heterosynaptic
plasticity, the weight potentiation/depression will involve all the
afferences of D2, but if we assume that the lateral contribution
is weak, its impact on the inner state of D2 will be negligible,
then the modifications related to the input w(D2,ES2) will
be the relevant ones for the operation of the structure, and
lateral contributions will have only a modulatory function
(heterosynaptic modulation).

Considering that connections are instantaneous (as specified
in section 2.3), we note that the 1T cited in section 2.2 in this
configuration corresponds to 1toutD1 ,D2 (see Figure 6). We can
then write:



















1w(D2,ES2) = A+e
−

1t outD1,D2
τ+ , for 1t outD1 ,D2 > 0

1w(D2,ES2) = 0, for 1t outD1 ,D2 = 0

1w(D2,ES2) = A−e
1t outD1,D2

τ− , for 1t outD1 ,D2 < 0

(19)
The difference 1t outD1 ,D2 elicits an increase of the weight
w(D2,ES2) when the arrival pulses order is D2, D1 (a decrease
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otherwise), causing a decrease (increase) of the latency at the
arrival of the next ES2.

Considering now the overall structure, we have to take it into
account for the generic Dn the influence of both the neighboring
branches (i.e., the influence of Dn−1, and that of Dn+1, on Dn).
In this way, for the update of the weight w(Dn,ESn) the following
two sets of equations are used:

• influence of Dn−1 on Dn



















1w(Dn,ESn) = A+e
−

1t outDn−1,Dn
τ+ , for 1t outDn−1 ,Dn > 0

1w(Dn,ESn) = 0, for 1t outDn−1,Dn = 0

1w(Dn,ESn) = A−e
1t outDn−1,Dn

τ− , for 1t outDn−1,Dn < 0

(20)
• influence of Dn+1 on Dn



















1w(Dn,ESn) = A+e
−

1t outDn+1,Dn
τ+ , for 1t outDn+1 ,Dn > 0

1w(Dn,ESn) = 0, for 1t outDn+1,Dn = 0

1w(Dn,ESn) = A−e
1t outDn+1,Dn

τ− , for 1t outDn+1,Dn < 0

(21)

These equations apply to all delay neurons except for the first and
the last branches, which have only one neighbors.

Synaptic changes must be induced by spikes belonging to
the same sequence. Consequently, it is important to prevent
interference between subsequent multi-neuronal sequences. This
is done by carefully adjusting the STDP time constants.

In some scenarios, we aim at a certain tolerance to a temporal
jitter of the input spikes. By changing the decay constant Ld we
can modulate the tolerance of the structure: the higher (lower)
the Ld, the more selective (robust) the structure becomes to the
jitter. Another relevant characteristic is that, when using the
MNSD, the detection does not depend on the arrival time of the
first spike but only on the intervals between spikes. In a three
dimensional feature problem (characterized by three neuronal
pathways), the corresponding hypervolume is (in our case, where
all Ld are equal) a cylinder whose radius depends on Ld and
its axis ζ has a slope of 45◦ with respect of each of the axes
(see Figure 7). Its mathematical form is defined by the following
expression:

ζ = (toffset +
1

w(D1,ES1)− 1
, toffset +

1

w(D2,ES2)− 1
, toffset

+
1

w(D3,ES3)− 1
) (22)

Where toffset is the time of arrival of the first pulse of the sequence.
In Figure 7 we represent the cylinder defined by our MNSD. If
the arrival times of a pattern fall into the cylinder, the MNSD
produces a spike.

3. RESULTS

In order to show how the developed MNSD tool can be used
to tackle pattern recognition problems, we test the structure on

FIGURE 7 | Representation of class hypervolume identified by a three

dimensional MNSD. While STDP translates the axis of the cylinder (ζ , shown in

dashed gray), Ld varies its radius. For this figure we assumed that the

multi-neuronal patterns arrive to the MNSD when the neurons are at their

resting potentials.

two different datasets, dataset 1 and dataset 2. Dataset 1 has been
artificially generated, to show the behavior of the tool. Dataset 2
consists of real brain data, related to the recognition of cognitive
states. In order to set up the MNSD, we implement Equations
2.3.2 and 2.3.3 in Matlab R© environment. Taking into account
the constrains for the correct operation of the MNSD, in the
following simulations we initialize the structure as follows:

• tf ,max larger than the maximum possible 1tin. To achieve this,
we set c = 0.04 (i.e., tf ,max = 25 ms) and adapt the patterns
employed in the simulations to fall within the range [0–25] ms;

• Input amplitudes are chosen to leed Dn around the center
of the latency range (i.e., tf ,max/2 = 12.5 ms), to obtain the
largest margin to set Dn. To achieve it, we set A(ESn) = 1
and w(Dn,ESn) = 1.08; for simplicity, the other weights of
the structure have also been set to the value 1.08;

• Weak lateral contributions;
• For the STDP we set τ+ and τ− to a value that allows the

interplay of spikes of the same sequence, but at the same time
avoids interaction between adjacent sequences (τ+ = τ− =

9.6 for both the datasets), and take A+ and A− in a range that
prevents abrupt changes of weights during the presentation of
patterns, and at the same time show a progressive stabilization
of the synaptic weights during the learning phase. We fix
A+ = −A− for simplicity, with their absolute value < 0.01
for both the datasets (specific values are given in the next
subsections).

3.1. Dataset 1
We generate 2 sets of multi-neuronal spike patterns (120 patterns
for class 1 and 20 for class 2). We assume that the patterns are
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characterized by three features, so that we generate 3 vectors per
class, using Matlab R©. Vector values are generated with unitary
standard deviation σ , and mean µ such that the centroid of the
point set of class 2 is located at a certain distance Dc to the axis
ζ identified by the point set of class 1 (otherwise the two point
sets would represent the same pattern, as explained in section
2.3.3). Using a classifier based on a single MNSD, we carried
out a set of simulations varying over a broad range of values the
parameters Dc and Ld ([2-5] and [0.25-0.55], respectively). With
regards to the STDP we choose A+ = −A− = 0.002. The MNSD
was trained with 100 samples of class 1, in order to recognize
the distinctive timings of this class. For the test phase we used
20 samples from class 1 and 20 samples from class 2. During
the training phase the structure adjusted its weights due to
plasticity effects while during the test phase the weights were kept
constant. The target neuron should produce a spike only when
the class 1 is detected, allowing us to differentiate between the
two classes. For each set of simulations we have noticed that while
unseen patterns were presented to the MNSD the weights moved
through a trajectory depicted in Figure 8, achieving a progressive
stabilization toward a combination of values that maximized the
synchrony to the targets corresponding to the class 1 patterns.
In Figure 8 we summarize the simulations process, whereas in

Figure 9 we present the obtained results, where we consider the
following indices:

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

Precision =
TP

TP + FP
(24)

Recall =
TP

TP + FN
(25)

where TP stands for true positive, TN for true negative, FP
for false positive and FN for false negative. As expected, the
figure shows that the larger the Dc, the better the classification
performance. Differently Ld should be large enough to include in
the hypervolume most of the points of the class to be recognized,
but small enough not to include the points of class 2; in this
example we found Ld = 0.37 as optimal value.

3.2. Dataset 2
The second dataset is related to the recognition of cognitive
states, using real data from a motor-inhibitory (Go/NoGo)
task (Falkenstein et al., 1999; López-Caneda et al., 2017). Such
paradigm is useful to study neural substrates of response

FIGURE 8 | Example of simulation process, considering Ld = 0.37 and Dc = 5: (A) path of the weights along the presentation of the 100 patterns pertaining to class

1. A progressive stabilization of the weights is clearly noticeable (gray area) along the learning phase; (B) plot of the multi-neuronal spike patterns used for the test

(instances of class 1 are depicted in green, instances of class 2 in red).

FIGURE 9 | Test outcomes: (A) accuracy, (B) precision, and (C) recall.
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inhibition and sustained attention processes. Event-related
potentials studies have found discriminative neuroelectric
components (e.g., N2 and P3, Eimer, 1993; Falkenstein
et al., 1999; Falkenstein, 2006) between target and non-
target conditions, evidencing inhibition functional networks and
different motor responses (Kamarajan et al., 2004; Lavric et al.,
2004; Pandey et al., 2012).

The two classes of stimuli were presented to 67 participants
(age range: 13–15 years old), consisting in blue squares/green
circles as targets (Go) and green squares/blue circles as
non-targets (NoGo), displayed randomly and with a 70/30
presentation ratio. Participants were instructed to press a button
as fast as possible only when a target was shown in the center of
the screen (with the right hand Go and the left hand for NoGo).

FIGURE 10 | Multi-neuronal spike sequence generation process.(A) Position

of channels A,B,C; (B) extraction of the time series from a single trial: only

signals deriving from three channels are considered; (C) maxima are selected

to generate multi-neuronal spike sequences.

The stimuli were presented for 100 ms with a stimulus onset
asynchrony (time interval between two trials) of 1400± 200 ms.

High-density MEG signals were obtained from 306 channels
(102 pairs of planar gradiometers and 102 magnetometers)
with an Elekta Neuromag Vectorview system situated in a
magnetically and electrically shielded room. Only the 102
Magnetometers were used to carry out the analysis. The signals
were recorded with a 1000 Hz sampling rate and filtered online
with a band pass 0.1–330 Hz filter. A 3Space Isotrak II system was
used for the registration of the magnetic coil positions, fiduciary
points, and several random points spread across the participant
scalp. For this preliminary study, we have chosen randomly
one of the participants that performed this task. Methods were
carried out in accordance with the approved guidelines and
general research practice. The study was approved by the ethical
committee of the Complutense University of Madrid. Informed
consent has been obtained from the parents (or guardians) of the
subjects, since they are under the age of 16.

MEG data was first visually inspected to exclude obvious
artifacts. Although a statistical test revealed clear differences
between the two conditions on a sufficiently large set of samples,
neural noise renders the trial-specific discrimination between
the two classes of responses not trivial. To overcome this
limitation, we extracted in each trial the segment in the time
interval [0.1, 0.35]s after the stimulus presentation to exclude
the premotor response (which starts around 400ms) (Deecke
et al., 1976; Ikeda et al., 2000). This ensures that the activity
is related to the cognitive task only, reducing the artifacts due
to the motor action. We performed a second statistical test to
select the three channels that best differentiate the responses
of the two classes: (1) from the time series of each trial and
sensor we extracted the maximum peaks along the mentioned
time interval and transformed them into spike sequences; (2)
for each possible triad of sensors we generated the related
point set in the feature space, and selected the triad of sensors
which point set presents, at the same time, the higher Dc and
the lowest variability along the trials. In this way we selected
the representative sensors 1,331, 2,021, and 2,231 (that we call
channel A, channel B, and channel C, respectively) as the most
significant ones (see Figure 10). We realized a classifier based
on a single MNSD trained to recognize the distinctive timings
of the NoGo class, considering 105 NoGo samples of the used
dataset for the learning. For the test phase we used both Go
and NoGo samples (22 Go and 22 NoGo). During the training
phase the structure adjusted its weights due to plasticity effects
while during the test phase the weights were kept constant. Once

TABLE 1 | Test results.

Predicted values

Positive Negative

Real values Positive 15 7

Negative 7 15

Since the MNSD is trained to recognize the NoGo patterns, positives represent the NoGo

trials, whereas negatives the Go trials.
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trained, the target neuron should produce a spike only when the
NoGo class was detected, allowing us to differentiate between
Go and NoGo classes. To make the structure compatible with
this problem, we scaled the 250 ms interval of the segments by
a factor 10 (obtaining sequences of 25 time units). Starting from
the setting obtained from the previous example, we varied the
following 2 parameters to optimize the structure: A+ and A−

to obtain the stabilization of synaptic weights after the training
phase, and Ld to confer the proper tolerance to the structure.
We found A+ = −A− = 0.0085 and Ld = 0.13 as optimal
values.

While new patterns were presented to the MNSD, the weights
moved through a trajectory toward a combination of values
that maximized the synchrony to the targets corresponding
to the NoGo patterns. In Table 1 we report the details of
the test performed on the trained MNSD, which classification
performances are summarized below:

• Accuracy = 0.68

• Precision = 0.68
• Recall = 0.68

In Figure 11 we schematize the simulation process, showing the
path of the weights along the presentation of the 105 multi-
neuronal spike patterns of the NoGo class, and the plot of the
44 patterns used for the test. It can be seen that the NoGo class
is not easily separable using only 3 dimensions (MEG channels),
justifing the modest classification performance.

Finally, in order to show the validity of our method, we
have compared the MNSD with other classification methods:
logistic regression (LR), support vector machine (SVM) and
k-Nearest neighbors (kNN). The latter classifiers have been
implemented and trained using the Matlab classification learner
R© toolbox. The MNSD shows similar performances with respect
to the other classification techniques, reporting better results
than logistic regression and kNN (one-neighbor type). The
comparison is summarized in Figure 12 in terms of classification
performances.

FIGURE 11 | Resume of the simulation process: (A) path of the weights along the presentation of the 105 patterns pertaining to class 1. A progressive stabilization of

the weights is clearly noticeable (gray area) along the learning phase. (B) plot of the multi-neuronal spike patterns used for the test (instances of Go are depicted in

green, instances of NoGo in red).

FIGURE 12 | Comparison with other classification techniques: LR, SVM (with linear and cubic kernels) and kNN (fine and coarse, i.e., with 1- and 100-neighbors

respectively).

Frontiers in Neuroscience | www.frontiersin.org 11 October 2018 | Volume 12 | Article 780

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Susi et al. A Neuro-Inspired System

4. DISCUSSION AND CONCLUSIONS

In this study we have presented a multi-neuronal spike-pattern
detection structure, MNSD, which combines the LIFL neuron
model and heterosynaptic STDP, to perform online learning and
recognition of multi-neuronal spike patterns.

The presented structure includes a bio-plausible self-tuning
mechanism, which is able to learn and recognize multi-neuronal
spike sequences through repeated stimulation. The time-
amplitude conversion operated by the spike latency feature is one
of the key operation principles of the structure, then the same
task could not be performed by a simple LIF. Heterosynaptic
excitatory STDP is allowed by the lateral connections in
the network. It represents a mechanism to enhance synaptic
transmission, or synapsis strengthening, and consequently the
sensitivity to incoming sensory inputs (Christie and Westbrook,
2006).
To illustrate the ability of our structure, we have used the MNSD
tool to discriminate between Go and NoGo decision during a
motor-inhibitory task, and compared it to other classification
methods, obtaining good results. MNSD can be further applied to
problems with a greater number of features, and to other contexts
of temporal stream data where SNN have already been applied
(Lo Sciuto et al., 2016; Brusca et al., 2017).

STDP is present in different areas of the brain, including
sensory cortices such as the visual and auditory, as well as the
hippocampus (Matsumoto et al., 2013; Yu et al., 2013, 2014).
Since STDP associates with coincidence detectors, where neurons
get selective to a repetitive input pattern, it is thought to be
crucial for memory and learning of the attributes of the stimuli
(e.g., visual and auditory stimuli), even when the exposure is
to meaningless sensory sequences that the subject is unaware
of (Masquelier, 2017). Thus, the structure presented here may
help understanding how humans learn repeating sequences in
sensory systems. In fact, in sensory systems, different stimuli
evoke different spike patterns but the exact way this information
is extracted by neurons is yet to be clarified.

We can envisage to expand our MNSD structure in a
modular way, such that each class is topologically structured with
elementary building blocks among repetitive cortical columns
and microcircuits: add other branches in parallel to increase the
number of features, or inject the same ES to more than one delay
neuron to obtain articulated shapes of class hypervolumes.

In the literature there are many learning methods for SNNs
that make use of biologically plausible strategies. While the
most of methods are based on synaptic learning rules aimed
at modifying the weights (i.e., weight adjustment) only few of
them consider also the modulation of the delay time to achieve

learning (i.e., delay shift Brückmann et al., 2004; Adibi et al., 2005;
Taherkhani et al., 2015; Matsubara, 2017; Hwu et al., 2018). It has
been demonstrated that the alteration of delays has advantages
in forming spatiotemporal memories, over altering synaptic
weights (Izhikevich, 2006; Hwu et al., 2018). Various biological
justifications have been attributed to the delay adjustment
process, among which the activity-dependent myelination, which
in turn results in the modulation of conduction velocities (Fields,
2008, 2015; Matsubara, 2017; Hwu et al., 2018). Differently,
MNSD integrates the delay and weight adjustment methods
by means of the well-known mechanism of spike latency
(Izhikevich, 2004), representing a new opportunity to understand
the mechanisms underlying biological learning.
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