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Drug abusers typically consume not just one but several types of drugs, starting from alcohol and

marijuana consumption, and then dramatically lapsing into addiction to harder drugs, such as cocaine,

heroin, or amphetamine. The brain of drug abusers presents various structural and neurophysiological

abnormalities, some of which may predate drug consumption onset. However, how these changes translate

into modifications in functional brain connectivity is still poorly understood. To characterize functional

connectivity patterns, we recorded Electroencephalogram (EEG) activity from 21 detoxified drug abusers
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and 20 age-matched control subjects performing a simple counting task and at rest activity. To evaluate
the cortical brain connectivity network we applied the Synchronization Likelihood algorithm. The results
showed that drug abusers had higher synchronization levels at low frequencies, mainly in the θ band (4–
8 Hz) between frontal and posterior cortical regions. During the counting task, patients showed increased
synchronization in the β (14–35 Hz), and γ (35–45 Hz) frequency bands, in fronto-posterior and inter-
hemispheric temporal regions. Taken together ‘slow-down’ at rest and task-related ‘over-exertion’ could
indicate that the brain of drug abusers is suffering from a premature form of ageing. Future studies will
clarify whether this condition can be reversed following prolonged periods of abstinence.

Keywords: Addiction; polydrug use; EEG; resting state; synchronization; functional connectivity.

1. Introduction

Drug addiction is at the root of one of the most severe
public health problems, with extensive social and
individual consequences, including family disintegra-
tion, loss of employment, failure in school, domestic
violence, child abuse, mental health disorders and
other diseases (HIV, Hepatitis, etc.), and massive
economic costs (Office of National Drug Control Pol-
icy, 2004). Drug addicts are often polydrug users,1

the typical individual trajectory starting with alco-
hol and cannabis consumption during adolescence,
and subsequently escalating to heavier substances,
including amphetamines, heroin, cocaine.

Drug addiction has been associated with a broad
range of cognitive deficits in domains, including
emotional regulation and motivation, attention and
flexibility, working memory, learning, and decision
making.2 Neurophysiological studies showed that
drugs of abuse exert their reinforcing and addic-
tive effects by acting on the mesolimbic and meso-
cortical dopamine-mediated reward system either
directly,3 or indirectly, through other neurotrans-
mitters e.g. glutamate, γ-aminobutyric acid, opi-
oids, acetylcholine, cannabinoids and serotonin in
the reward circuit4 (see for a review). Furthermore,
chronic drug abuse affects function in dopaminer-
gically innervated corticolimbic areas, including the
orbitofrontal and anterior cingulate cortices, which
mediate processing of reward salience, motivation,
and inhibitory control.2

Structural imaging studies have shown up to
20% loss in gray matter density or thickness at
various prefrontal areas, including dorsolateral pre-
frontal, anterior cingulate and orbitofrontal cortices,
across addiction populations, sometimes lingering
after several years of abstinence.2 Consistent with

neurophysiological studies, recent neuroimaging evi-
dence showed that drugs of abuse are associated with
significant alterations in extensive areas of the cor-
tex, especially in the frontal and temporal areas.5

Compelling evidence suggests that drugs may cause
orbital cortex dysfunction and contribute to the tran-
sition to drug addiction, while even brief periods of
drug exposure can lead to long-lasting functional and
structural deficits associated with the orbito-frontal
cortex.6 In addition, abnormalities in drug abusers
may predate drug abuse onset, pointing to a pos-
sible proneness of these subjects to slide towards
drug addiction.7 Electrophysiological studies of drug
abuse have mainly been devoted to the analysis of
band-power modifications in various forms of addic-
tion. Enhanced power in the α frequency band
(8–12Hz) was shown in associations with cocaine
abstinence relative to a control group.8 Substance-
dependent subjects have also consistently been asso-
ciated with increased power in the β frequency range
(13–25Hz).9–11 However, in most studies, β power
was associated neither with substance abuse vari-
ables, e.g. length of exposure to drugs, time since last
use of drugs, age or frequency of drug use, nor with
clinical symptoms such as the severity of craving.12

For instance, in cocaine withdrawal patients, rest-
ing absolute lower β power in the left temporal
region and δ power (0.5–4Hz) in the right hemi-
sphere temporal region, was shown to increase with
drug abstinence duration,13 suggesting that chronic
cocaine use may be characterized by electrophysi-
ological abnormalities persisting during short-term
abstinence. These results suggest that Electroen-
cephalogram (EEG) power may be more related to
pre-morbid individual differences rather than to the
effects of drug abuse.12

1450005-2



2nd Reading

November 30, 2013 9:56 1450005

Drug Polyconsumption is Associated with Hypersynchronized Brain Activity

1.1. Functional brain connectivity and
drug addiction

Drug consumption initiates a broad reorganization
of cortical activity, which goes beyond the activity in
the reward-related neural circuit.14 Thus, a sensible
way to understand the pattern of reorganization of
activity involves studying connectivity between dis-
tant brain regions.15,16

Functional connectivity, i.e. the temporal corre-
lation between spatially remote neurophysiological
events,17 is believed to play a prominent role in such
reorganization and is useful in quantifying distur-
bances in the coordination of activity between dif-
ferent neural systems associated with psychiatric or
neurological pathology.18–23

Functional imaging studies of resting-state func-
tional connectivity in drug addiction generally
pointed at a decrease in functional connectivity. An
inverse correlation between dorsal anterior cingulate
cortex–striatal (ACC) connectivity and severity of
nicotine addiction was found in cigarette smokers.
The coherence strength of several ACC connectiv-
ity paths was significantly boosted by the use of a
nicotine patch.24 In abstinent smokers, withdrawal
symptom improvement after nicotine replacement
therapy was associated with altered functional con-
nectivity within the default mode network, with
increased inverse correlation between the executive
control network and the default mode network,
and with altered functional connectivity between
the executive control network and regions mediat-
ing reward.25 Decreased functional connectivity was
also reported for other forms of addictions, includ-
ing cocaine26,27 and heroin addiction.28,29 Further-
more, a recent functional magnetic resonance study
showed reduced prefrontal interhemispheric connec-
tivity in cocaine-dependent participants relative to
control subjects, in a network comprising bilateral
lateral frontal, medial premotor, and posterior pari-
etal areas.30

The sort of connectivity measured by functional
brain imaging only captures slow stationary cor-
relations between blood flow amplitudes at differ-
ent brain sites. Rapid and transient synchronization
between distant brain regions can be measured using
electrophysiological techniques.31,32 Long range syn-
chronization between distant neuronal populations
has been proposed as an important brain mechanism

for communication and information integration.33–35

Binding phenomena in perception36 or the formation
of new memories37 seem to be based on synchroniza-
tion of electrical activity, between two brain regions,
at specific frequency bands. Significant deviations
from connectivity patterns seen in healthy subjects
have been associated with various pathologies, e.g.
epilepsy, Parkinson’s disease, schizophrenia, demen-
tias, traumatic brain injury, and compensatory
strategies following brain damage.38–47

Only few electrophysiological studies analyzed
functional connectivity in drug addiction. Early
studies used coherence analysis, a technique that
focuses on pairwise correlations of power spectra
obtained from different electrodes. Coherence is a
measure of the functional interactions between brain
areas at different frequency bands. One study com-
pared the spatial organization of electrophysiologi-
cal activity of alcoholics, heroin addicts and healthy
controls.48 Changes in spectral-coherence character-
istics were revealed at all frequency bands, with
maximal changes at θ frequencies in drug addicts
and in narrow-frequency α subranges in alcoholics.
Ethanol and heroin consumers were characterized
by different effects in the β band (19–21Hz). Poly-
substance abusers have been associated with reduced
interhemispheric δ and θ bands, and frontal β band
coherence.9 Most recently, heroin-dependent sub-
jects, with a two week abstinence period, were found
to have increased left fronto-occipital intrahemi-
spheric γ coherence, as well as higher relative β2
power, compared to control subjects.12

Fingelkurts and colleagues used structural syn-
chrony analysis,49 to evaluate connectivity in a
group of opioid-dependent patients during acute
dependence15 and short-term withdrawal.50 Opioid-
dependent patients had significantly decreased
remote connectivity at rest, during acute opioid
influence,15 but abnormally enhanced during short-
term withdrawal, i.e. after a two week detoxification
period,50 for both α and β frequencies. For with-
drawal subjects, the number and strength of remote
functional connections, was significantly higher in
patients than in healthy controls, most prominently
at β frequencies and to a lesser extent in the α range,
particularly at frontal scalp locations, but also in
central-temporal, left occipital and parietal cortical
areas. In addition, functional connectivity measures
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correlated with severity of opioid withdrawal patients
with the strong withdrawal symptoms having denser
and stronger synchronicity between cortical areas
than patients with mild withdrawal symptoms. The
authors interpreted the results for acute subjects
as reflecting the disorganization and relative lack of
integration of different cognitive functions reported
in the acute phase of opiate abuse.51 The enhanced
synchronicity reported for withdrawal patients, par-
ticularly within frontal areas, was suggested as the
possible underlying activation mechanism of emo-
tional attention subserving drug-related cognitive
processes including chronic opioid- related thought
maintenance and craving urges.50

Whether the pattern of abnormal synchroniza-
tion associated with drug administration persists
over periods longer than the short-term withdrawal
considered in Ref. 50, and whether hypersynchro-
nization is observed for both resting brain connec-
tivity and task-induced activations is still unclear.

In the present study, we addressed these two
issues by investigating long-range synchronization in
a population of polydrug users having undergone a
three-month detoxification period. Synchronization
likelihood (SL) is a method based on the concept
of generalized synchronization which detects nonlin-
ear and linear dependencies between two signals.52

It is a robust algorithm which overcomes the limi-
tations of linear approaches, which has widely been
used as a functional connectivity measure in differ-
ent pathologies.47–49 SL could be complementary to
other measures of functional connectivity such as
mutual information and phase synchronization.

The SL main virtue is that it is able to give robust
information about the general patterns of functional
connectivity between two relatively long time series.
However, it is not as useful as phase synchronization
(for example) for short time series.53

Since we are mainly interested in differences
between controls and patients for relatively long time
series (50 s), SL was the chosen metric for the present
study.

We expected differences between controls and
patients in the ways in which brain regions are
coordinated both at rest and while performing a
very simple cognitive task (counting). Different topo-
graphical and/or frequency patterns of connectiv-
ity would imply a distinct functioning manner for

controls and polydrug abusers, and would allow char-
acterising the brain networks affected by drug abuse.

2. Methods

2.1. Subjects

A total of 54 male patients (age range 21–61 years)
from the Centro Terapéutico Barajas, Madrid partic-
ipated in the study. Patient diagnosis was established
according to the International Statistical Classifica-
tion of Diseases and Related Health Problems (10th
Revision, viz. F19 “Mental and behavioral disorders
due to psychoactive substance use”). This category
should be used when two or more psychoactive sub-
stances are known to be involved, but it is impossible
to assess which substance is contributing most to the
disorders. It should also be used when the exact iden-
tity of some or all the psychoactive substances being
used is uncertain or unknown, since many multiple
drug users themselves often do not know the details
of what they are taking. In addition, only patients
with an abstinence period from psychoactive sub-
stances of at least three months were included in the
study. During that period of abstinence none of the
subjects consumed any substances. To have certainty
of this fact, the participants were hospitalized in the
Therapeutic Center where they passed periodic uri-
nalysis.

A total of 29 age-matched control subjects were
recruited for the study. An individual interview ver-
ified that they had no past history of psychoactive
substance consumption.

Table 1 summarizes the demographic information
for both groups.

2.2. Task

All participants underwent a 5-min resting state con-
dition and a counting forward task. In the counting
forward task, subjects were asked to mentally count
forward, trying to follow a 1Hz rate. After 30 s, in
order to validate the test, participants were asked to
stop counting, the result being correct if the num-
ber was 30±5. Under both conditions, subjects were
asked to keep their eyes closed.

Before the EEG recording, all participants gave
informed consent to participate in the study. The
study was approved by the Local Ethics Committee.
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Table 1. Demographic information for both groups (Patients and Controls).

Patients Controls

Average age 39.5 Average age 32.4

Sex Sex
Male 100% Male 100%

Education Education
No formal education/primary school 43 (79.63%) No formal education/primary school 2 (6.9%)
Secondary education 9 (16.67%) Secondary education 7 (24.2%)
University education 2 (3.7%) University education 20 (68.9%)

2.3. EEG recording

All EEG records were performed between 10:00 and
12:00 a.m.

A 40-channel EEG system (Neuroscan, model
NuAmps), with electrodes positioned according to
the International 10–20 System was used. The sig-
nal was recorded at a sampling rate of 1KHz. A
notch filter (50Hz) was applied online. The 50Hz
band was eliminated to avoid line noises. An aver-
age reference montage was calculated offline to avoid
possible problems with a unique reference.

People in charge of analyzing the EEG recordings
were blind to the drug history of the subject/control.

2.4. Synchronization likelihood

SL52 is arguably the most popular index to esti-
mate Global Synchronization in neurophysiological
data. It gives a normalized estimate of the dynam-
ical interdependencies between two or more simul-
taneously recorded time series. This index, which is
closely related to the concept of generalized mutual
information,54 relies on the detection of simultane-
ously occurring patterns, which can be complex and
widely different in the two signals.

Considering two simultaneous time series xk,i,
where k = 1, 2 and i denotes discrete time (i =
1, 2, . . . , N).

We reconstructed with time-delay embedding55

both time series:

X1,i = (x1,i, x1,i+1, x1,i+2l, . . . , x1,i+(m−1)l),

X2,i = (x2,i, x2,i+1, x2,i+2l, . . . , x2,i+(m−1)l),

where l is the lag and m is the embedding dimen-
sion. Each time series (1 and 2) was reshaped into a
matrix with m columns and N rows (for example:
lag =1). Then, for each time series and each row

(rk,i = i, i+1, i+2, . . . , i+m−1) of the matrix, by an
iterative process (increasing an ε value, from ε ∼ 0),
we determined the value ε for which P ε

k,i = pref ,
where pref ≤ 0.05.

P ε
rk,i

=
1

2(w2 − w1)

N∑

j=1

θ(ε − |rk,i − rk,j |)

with w1 < |i − j| < w2, (1)

where |·| is the Euclidean distance and θ is the Heav-
iside step function (θ(x) = 0 if x ≤ 0 and θ(x) = 1 if
x > 0); w1 and w2 are two time windows; w1 is the
Theiler correction for autocorrelation time56; w2 is a
window that sharpens the time resolution of the syn-
chronization measure, chosen so that w1 � w2 � N

(see Ref. 57 for the w2 calculation procedure).
This yields the εrk,i

value corresponding to each
time series and each row of the mentioned matrix,
from which the SL can finally be calculated.

For each discrete time i (row) and each of both
time series, we quantify the number of coincidences
within w1 < |i − j| < w2. Thus, if

Hr1,i r1,j = θ(ε1,i − |r1,i − r1,j |) = 1 (2)

and

Hr2,i r2,j = θ(ε2,i − |r2,i − r2,j |) = 1, (3)

then

Sr1,i r2,i = Sr1,i r2,i + 1. (4)

Repeating for w1 < |i− j| < w2, we get the synchro-
nization value (Sr1,i r2,i) between both time series at
time i. Finally, by adding all rows of the matrix, we
will obtain the SL between two time series. The range
of the SL is: 0 ≤ SL ≤ 1.
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2.5. EEG analysis

Prior to functional connectivity analysis, all records
were visually inspected by an experienced inves-
tigator, and all of them containing visible blinks,
eye movements or muscular artifacts were excluded
from further analysis. Only completely artefact-free
subjects (21 patients and 20 control subjects) were
retained for further analysis. For each subject, 50 s
of eyes-closed activity and 50 s of eyes-closed while
counting were selected. These 100 s were split into
epochs of 1 s length, yielding a total of 50 epochs of
resting state (eyes-closed) and 50 epochs of counting
forward (eyes-closed).

An in-house Fortran code was used to imple-
ment the SL algorithm.52 The SL algorithm was
applied to the 100 extracted artifact-free one sec-
ond epochs for each subject. For each frequency band
optimal SL parameter values were chosen according
to Montez,57 for each frequency band and one second
length: Lag : L = fs/(3 ∗ HF), Embedding dimen-
sion: M = 3 ∗HF/LF, Theiler window: W1 = 2 ∗L ∗
(M − 1), Percentage of close vectors: Pref < 0.01,
Window length: W2 > 10/Pref + W1 − 1, where fs
(1 KHz), HF and LF are respectively the sampling
rate and the high and low frequency bound.

The following frequency bands were consid-
ered: θ (4–8Hz), α1 (8–11Hz), α2 (11–14Hz), β1
(14–25Hz), β2 (25–35Hz), γ1 (35–45Hz) and γ2
(55–80Hz). The 50Hz band was eliminated to avoid
line noises. The SL was calculated for each of the 100
one-second epochs with 34 ∗ 33/2 channel pairs for
each frequency band and each subject (20 controls
and 21 patients). The SL index was not computed for
bands below 4 (Hz) as the epoch length and sampling
rate do not allow accurate enough estimations.57

2.6. Statistical analysis

A nonparametric permutation test was applied to
find channel pairs with significant differences in
SL between groups.58 For the purpose of perform-
ing paired or unpaired comparisons, randomization
methods consist of random permutations of data.
Randomization methods are also often called permu-
tation methods or tests (for details, see ‘Statistical
Methods’, Delorme A.). Permutation tests provide
exact, strong control of Type I error rates.

Permutation tests were performed according to
the following procedure: First, for each condition

(rest or task), and for each channel pair (i, j), a two-
sample Kruskal–Wallis test was carried out using SL
values as independent variable, so as to obtain the
corresponding p-value between the two original sam-
ples, xi (20 patients) and yj (21 controls).

The randomization method involves pooling
together the data of xi and yj into a new set z, so
that subjects are permutated. Then, two groups xi

′

and yj
′ of the same size as xi and yj respectively

are randomly drawn from z (without replacement).59

The p-value is then computed (by a Kruskal–Wallis
test) for each randomized pair of samples (xi

′ and
yj

′), yielding the corresponding p-value. This ran-
domization procedure was repeated 10,000 times to
get the distribution of the estimator (total of 10,001
p-values). Finally, the 1st percentile of the distribu-
tion was identified, and p-values corresponding to the
original samples (xi and yj) below that threshold
were considered as statistically significant.

This procedure was repeated for each channel
pair and each condition (resting or task).

3. Results

Once the nonparametric permutation testing was
applied to localize channel pairs with significant dif-
ferences between both groups, in order to discrimi-
nate the group (Patients or Controls) showing higher
synchronization values, we performed the average
synchronization value for each channel and for each
group. This indicated which group had increased
synchronization.

Patients showed increased synchronization at rest
when compared to the healthy control group in the
θ band (4–8Hz). Figures 1(a) and 1(b) show that
the patient group had higher average synchroniza-
tion values at each channel with respect to all other
channel, with a similar topographical pattern for
both groups. Figure 2 shows that differences are most
pronounced at prefrontal scalp sites, particularly in
the right hemisphere and in posterior regions.

During the counting condition, patients also dis-
played elevated synchronization, particularly at high
frequencies (β and γ) (see Figs. 3 and 4). At
β1 frequencies (14–25Hz), hypersynchronization was
found in prefrontal and temporal regions bilater-
ally (see Fig. 3). In the β2 range (25–35Hz), the
synchronization pattern was very similar to that for
β1 synchronization, with a possibly more pronounced
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Fig. 1(a). Mean synchronization (SL) per frequency band (Theta, Beta 1, Beta 2 and Gamma 1), indicated per group
(patients and controls). Error bars indicate standard deviation. Mean synchronization values for each group (patients and
controls), was calculated among all EEG’s channels.

Fig. 1(b). Average synchronization values at each channel with respect to all other channel, in frequency bands: Theta,
Beta 1, Beta 2 and Gamma 1. The total number of EEG channels is 34.
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Fig. 2. Significant differences in SL between electrode pairs in “resting state” and for the θ frequency band (Patients >
Controls). Around 10% of the pairs (51/561) were found to have statistically significant difference. Nonparametric per-
mutation testing was applied to find channel pairs with significant differences between both groups.

prefrontal character (see Fig. 3). Finally, in the
γ band (35–45Hz), synchronization values had a
markedly fronto-posterior pattern (see Fig. 4).

4. Discussion

We studied long-range synchronization of electrical
brain activity in a population of polydrug users after
a three-month long detoxification period.

Although potentially relevant to the study, we do
not have any information related to the amount of
sleep the subjects in both groups had the night before
the recording (EEG).

As said in the EEG recording section, for the
EEG analysis an average reference montage was
used. In this sense, we want to point out that
the average reference methods involve mixing the
amplitude and phase from different scalp locations
resulting in phase and coherence distortions as shown

in Refs. 60–62. Moreover, this montage avoids arti-
facts when a high spatial electrode density is avail-
able and when a large area of the head is covered.63

Additionally, the posterior alpha rhythm appears to
be mirrored at the central coronal line (for empir-
ical demonstrations, see Refs. 64 and 65. Thus, a
possible increasing anterior alpha activity might be
interpreted as an artifact of the reference. At any
rate, since the outcomes in the present study are
mainly found in the Theta, Beta and Gamma fre-
quency bands, this type of artifact, due to the mon-
tage used, should not strongly affect our results.

Our results show that polydrug abusers pre-
sented a higher synchronization level than controls.
Drug abusers presented hypersynchronization of low
frequency brain activity at rest, mainly in fronto-
posterior and fronto-temporal regions. Finally, drug
abusers were characterized by high-frequency hyper-
synchronized activity during the execution of a
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Fig. 3. Significant differences in SL between electrode pairs during “counting” task for β1 and β2 frequency bands
(Patients > Controls). Around 15% of the pairs (87/561) were found to have statistically significant differences. Nonpara-
metric permutation testing was applied to find channel pairs with significant differences between both groups.

counting task, which was prominent at inter-
hemispheric temporal, fronto-posterior, and fronto-
temporal regions.

Although decreased high frequency synchroniza-
tion levels are commonly thought to reflect decreased
functional cortico-cortical connectivity, the general
interpretation of increased synchronization is less
clear.

Sleepiness is indeed a plausible interpretation.
In fact, it is known that sleepiness may directly
influence EEG signal characteristics.66,67 Alpha
and Theta power density showed highly significant
increase at the Karolinska Sleepiness Scale a scale
that is frequently used for evaluating subjective
sleepiness.66

Unfortunately, we do not have any information
related to the amount of sleep for the night prior to
the recording session (EEG).

However, while sleepiness may be an issue, there
is no a priori reason to consider that this particular
issue differentially affected the two groups, so that
individual differences within groups may well exceed
inter-group ones.

Excessive synchronization may indicate that two
brain areas have an excessive level of functional con-
nection reflecting, for instance, an attempt to com-
pensate for local malfunctioning.12 In this sense44

found that during Mild Cognitive Impairment (con-
sidered an intermediate state between healthy aging
and dementia) the brain is still able to compensate
for potential initial anatomical defects resulting in an
increase of functional connectivity. Posterior studies
even associated the increased synchronization in pos-
terior regions with dementia.68

Thus, although our study does not allow con-
cluding whether hypersynchronization at rest is
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Fig. 4. Significant differences in SL between electrode pairs during “counting” task for the γ1 frequency band
(Patients > Controls). Around 10% of the pairs (49/561) were found to have statistically significant differences. Nonpara-
metric permutation testing was applied to find channel pairs with significant differences between both groups.

reversible or not, our results may hint at a prema-
ture deterioration of polydrug consumers’ brain, con-
sistent with a recent study suggesting that chronic
cocaine exposure may interfere with the processes of
brain ageing.69

Recently, it was proposed that abnormal infe-
rior prefrontal cortical connectivity at rest under-
lies an increased risk for developing stimulant drug
dependence.7 Thus, although employing a differ-
ent technique from the one used here, these results
may lend support to the notion of resting prefrontal
hypersynchronization as a predisposing factor for
drug abuse.

A plausible related explanation would be in terms
of slowing of cognitive processes, and decreased abil-
ity of drug abusers to cope with the demands of a
constantly changing environment.15 This explana-
tion would be consistent with studies on patients
under acute opioid influence reporting (i) increases
in the size, functional life span, and stability of

quasi-stationary brain activity, in both α and β fre-
quency bands,15 which diminished but did not disap-
pear during short-term withdrawal,50 and (ii) with a
correlation between life-span of neuronal assemblies
and reaction times.70

Alternatively, enhanced synchronization may
reflect enhanced arousal level, when at β, a plau-
sible interpretation in the case of short-term drug
abstinent subjects.12–15 In addition, stronger syn-
chronicity at these frequencies was found to cor-
relate with the strength of withdrawal symptoms
during short term withdrawal in opioid-dependent
patients.50 Interestingly, in our study, we found no
signs of β synchronization at rest. This is probably
due to the fact that in the cited work,50 a short-term
abstinence was studied, whereas in ours, the absti-
nence was a long-term one.

Frontal hemispheric α coherence was found
to be associated with craving in heroin absti-
nent subjects.12 Enhanced α synchronization may
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reflect relative attentional rigidity, anxiety, and
arousal in patients during withdrawal. In turn,
these altered processes may trigger craving, drug-
related expectancies and intrusive thoughts related
to drugs.71 Thus, our results may suggest that cog-
nitive disorganization, hyperarousal and craving alle-
viate as the withdrawal period decreases.

The high-frequency hypersynchronization asso-
ciated with the execution of a counting task may
indicate an excessive task-induced effort.7 These
studies show that with increasing task difficulty, syn-
chronization increases, indicating that patients need
an extra amount of synchronization to perform the
same task. The different frequency from the one
associated to resting hypersynchronization (β and γ

versus θ frequencies respectively) points to at least
partially dissociable phenomena. On the other hand,
both the frontal topography and the frequency in
the β and γ range for task-related hypersynchroniza-
tion mirror prior reports of enhanced connectivity at
rest in short-term drug-abstinent heroin-dependent
subjects.12

In conclusion, the present study represents one
of the still rare attempts at quantifying the effects
of drug addiction in terms of cerebral functional
connectivity, both at rest and during the execu-
tion of a cognitive task. Our results show that drug
administration affects not only resting but also task-
induced brain connectivity, and that this effect can
still be observed after a drug abstinence period
of at least three months. This persistent elevated
level of synchronous communication among cortical
areas may constitute the neural basis of the bias
in motivation and in cognitive processes including
attention, emotions, and memory characterizing
withdrawal from drugs. We propose to interpret
resting and task hypersynchronicity as slow-down
at rest and task-related over-exertion. Consistent
with prior suggestions69 we propose that the brain
of drug abusers may undergo a premature form of
ageing. Taken together with the result of existing
studies,15,50 our results contribute to the delineation
of a time-varying pattern of abnormal long-range
synchronization in various stages of drug addiction,
from acute dependence to short and medium term
withdrawal. Future studies will clarify the extent
to which hypersynchronization is permanent, and
whether it stems from drug abuse or represents a

pre-morbid factor predisposing individuals to drug
use and addiction.
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