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Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in
many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations,
which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the
network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct
connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity
through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive
version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre-
sponding functional connections.We applied beamformer source reconstruction to the resting stateMEG record-
ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired
(MCI), and 30weremultiple-domain amnesticMCI. An atlas-based anatomical parcellation of 66 regionswas ob-
tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re-
gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the
anatomical connectivity. Precision matrices were obtained with the region specific time series in five different
frequency bands. We compared our method with the traditional GL and a functional adaptive version of the
GL, in terms of log-likelihood and classification accuracies between the three groups.We conclude that introduc-
ing an anatomical prior improves the expressivity of themodel and, in most cases, leads to a better classification
between groups.

© 2014 Elsevier Inc. All rights reserved.
Introduction

The pre-dementia stage of Mild Cognitive Impairment (MCI) repre-
sents an intermediate state of cognitive decline that precedes the de-
velopment of Alzheimer’s disease (AD) and other types of dementia
(Petersen, 2011). The prevalence of MCI patients ranges from about
10% to 20% in people older than 65 years (Busse et al., 2006). From
those that suffer from MCI there is a rate of progression to dementia
of about 10% (Petersen, 2011). The pathophysiology of the disease
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lead to a progressive loss of synapsis efficacy (Selkoe, 2002) and loss
of neurons as well as damage in the white matter, due to the phos-
phorylation of the Tau protein affecting axon transmission, and the
accumulation of the beta amyloid protein, which impairs gabaergic
transmission (Garcia-Marin et al., 2009). All these lead to the view of
AD as a “disconnection syndrome” (Bajo et al., 2010; Delbeuck et al.,
2003; Stam et al., 2009) in which a progressive damage of global func-
tional and structural connections are potentially the cause of the insid-
ious cognitive impairment. The functional consequences of this
“disconnection syndrome” inMCI patients has been assessedwith func-
tional magnetic resonance imaging (fMRI) (Binnewijzend et al., 2012;
Toga and Thompson, 2013; Wang et al., 2013), electroencephalography
(EEG) (Stam, 2003) and magnetoencephalography (MEG) (Bajo et al.,
2012; Buldú et al., 2011; Zamrini et al., 2011).

The structural underpinnings associated with the functional discon-
nection may be studied in-vivo using diffusion-weighted magnetic
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resonance imaging (DW-MRI). Structural disconnection in MCI has
been studied in terms of white matter integrity (Medina et al., 2006;
O’Dwyer et al., 2011) and connectivity strength between pre-defined
brain regions (Daianu et al., 2013; Shao et al., 2012). However, little
is known about the relationship between the functional and struc-
tural components of brain network organization. A recent paper
(Pineda-Pardo et al., 2014) showed that the functional impairment of
resting-state MEG networks in MCI patients was related to the white
matter (WM) integrity of specific tracts, thus pointing to a structural-
functional relationship that could provide complementary information
when studying this type of pathology.

The application of machine-learning classifiers to resting-state (“off-
task”) functional connectivity (FC) is rapidly spreading, and is proving
to be a valuable tool in the diagnosis of neurological and psychiatric
pathologies (Atluri et al., 2013; Castellanos et al., 2013). The use of
resting-state fMRI in the diagnosis of amnestic MCI was applied by
Wee and colleagues (Wee et al., 2012b,c). They achieved a 86% accuracy
in patient classification, which was increased to 96% when including
structural connectivity datasets.

The fact that structural and resting-state functional connectivity are
strongly related has already been confirmed (Greicius et al., 2009; Van
den Heuvel et al., 2009). However, the best way of combining these
modalities to enrich our understanding of brain networks or to increase
the diagnostic potential is still unclear. Computational models that sim-
ulate brain dynamics include the structural connectivity between nodes
as coupling or constraining factors (Deco et al., 2013; Haimovici et al.,
2013; Honey et al., 2007, 2009; Woolrich and Stephan, 2013). These
models are capable of accurately reconstructing the large-scale net-
works derived from the slow fluctuations (b0.1Hz) of fMRI data. There
is also evidence that these models explain up to 40% of the functional
connections that are observed with empirical MEG and fMRI datasets
(Cabral et al., 2013; Honey et al., 2009). Diffusion-tractography in-
formed priors have also previously been shown to improve inference
of effective connectivity using Dynamic Causal Modelling of fMRI data
(Stephan et al., 2009). Thereforewe hypothesize that the structural con-
nectivity may also increase the accuracy in the estimation of the FC for
MEG data.

Traditionally empirical FC has been computed as linear correlations
between time-series. However, correlation-based approaches only
measure pairwise dynamics, and are unable to provide accurate topog-
raphies of the interactions between many brain regions (Smith et al.,
2011). Also, standard correlation analysis produces fully connected
functional networks, which are difficult to interpret. Furthermore, it is
impossible to discriminate direct from indirect functional connections
between two nodes, which can be driven by third nodes (Friston,
2011; Smith et al., 2011). The best way to overcome these limitations
is to use biophysical models, such as Dynamic Causal Modelling, to
infer effective connectivity (Friston et al., 2003). However, this becomes
unfeasible for whole-brain connectivity analyses for both computation-
al and statistical efficiency reasons.

Simpler models, such as the multivariate Gaussian distribution,
where direct connectivity is modelled bymeans of the precisionmatrix,
represent a useful alternative (Marrelec et al., 2006). The precision
matrix is the inverse of the covariancematrix. Zero elements in this ma-
trix represent an absence of direct connections, i.e., the partial correla-
tion is zero. Regularization approaches based on the l1-norm (Vidaurre
et al., 2013), such as the graphical lasso, allow one to find the zero ele-
ments in the precision matrix (Friedman et al., 2008; Smith et al.,
2011), hence sparsifying the connection map, and, as a consequence,
eliminating indirect functional connections. Sparse regression methods
have been widely applied with fMRI time-series (Smith et al., 2011;
Valdés-Sosa et al., 2005; Wee et al., 2014), however they typically do
not consider DW-MRI structural connectivity information. One excep-
tion was the analysis by Hinne and colleagues (Hinne et al., 2014),
where a shared adjacencymatrix was estimated from an average across
subjects of the structural connectivity. This matrix imposes a hard
constraint on the precisionmatrix, completely defining the sparsity pat-
tern before estimating the actual precisionmatrix. Inclusion of this spar-
sity constraint was observed to produce a significant improvement in
the estimation of the FC compared with non-structurally informed FC.

In this paper, we present a flexible approach for including DW-MRI
structural connectivity information in FC estimation based on resting
state MEG data. In our approach, the structural connectivity guides
(without strictly constraining) the precision matrix structure. This
means that, for example, in the case of a questionable estimation of
the structural connectivity, the model still has room to depart from
the structural sparsity pattern. For this purpose, we include one
adaptive penalization factor per connection. Unlike the approach used
by Hinne and colleagues (Hinne et al., 2014), this adaptive factor is
individualised for each subject. Although a similar approach has been
employed using fMRI time-series obtained from healthy subjects (Ng
et al., 2012), to our knowledge structural connectivity priors have not
been previously applied to neurophysiological data such as MEG. We
expect this approach to yield interesting results because, compared to
fMRI data, MEG data is a more direct representation of the neural activ-
ity with finer temporal resolution, thus allowing us to study functional
networks on a much wider frequency spectrum. Indeed, it has recently
been shown that MEG can be used to infer appropriate FC in the resting
state. However, FC is not computed as correlations on the raw time-
series as it usually is done in fMRI, but over band-limited power time-
series, particularly in the alpha and beta bands (Brookes et al., 2012;
Luckhoo et al., 2012).

The aim of this work is hence to accurately estimate FC between
brain regions, and to quantify how much the structural connectivity
contributes to the estimation. We hypothesize that the element-wise
adaptive penalization based on structural connectivity increases the
accuracy in the estimation of the sparse networks. We compare this ap-
proach to cases in which we compute the adaptive penalization relying
only on functional data, and in caseswhere the penalization is not adap-
tive. We also check whether the contribution of the structural connec-
tivity to the functional connectivity estimation improves the accuracy
of the discrimination between amnestic MCI subjects and healthy
controls, and between the single-domain and multiple-domain sub-
types of MCI. We carry out this analysis in different frequency bands.
The accuracies are tested in a 10-fold cross-validation approach using
four different classifiers: linear discriminant analysis (LDA), k-nearest
neighbours (kNN), support vector machines with polynomial kernels
(SVM), and support vector machines with radial basis functions kernels
(SVMrbf). Consistently with the literature on other modalities, our re-
sults indicate that an appropriate inclusion of structural connectivity
improves the classification.

Materials and methods

We next describe in detail our workflow, which comprises five
parts: sample selection, MRI acquisition and analysis, MEG acquisition
and analysis, estimation of the connectivity matrix and MCI condition
discrimination. A summary in flowchart format can be found in Fig. 1.

Sample selection

From an initial sample of 142 participants, we selected 81 due to: ar-
tifactual MEG dataset (N= 33); presence of vascular or tumour disease
after structural MRI scans (N= 2); artifactual MRI datasets due to mo-
tion (N = 7); or due to unmatched ages between groups (N = 19).
Twenty-nine subjects in the sample were healthy elderly controls
(HC) that were recruited from the “Seniors Center of the district of
Chamartín, Madrid”. The remaining fifty-two subjects were amnestic
mild cognitive impairment (MCI) patients. Diagnosis of theMCI patients
was reached through neuropsychological examination at the Hospital
Clínico de Madrid and the “UPDC del Ayuntamiento de Madrid”. The diag-
nostic examination included: the Spanish version of the Mini Mental



Fig. 1. Flow-chart diagram describing the processing pipeline of the study, from the acqui-
sition of MEG and MRI data to the statistical discrimination between healthy controls and
MCI groups.

Table 1
Demographic variables including gender, age, mini-mental state examination (MMSE)
scores and education scores. Education level is quantified as: 1. Illiterate; 2. Elementary
school studies; 3. Secondary school studies; 4. Technical or Mid-level studies; 5. Higher-
education or University studies. Data are given as mean (standard deviation). 1p b 0.01
significant difference after paired t-test statistical evaluation in comparison between HC
and sdMCI. 2p b 0.01 significant difference after paired t-test statistical evaluation in com-
parison between HC and mdMCI.

Group Gender:
Male/Female

Age MMSE1,2 Education2

HC (N = 29) 8/21 71.52 (3.36) 29.21 (0.28) 3.44 (1.24)
sdMCI (N = 22) 10/12 73.00 (5.08) 27.80 (1.87) 2.73 (1.28)
mdMCI (N = 30) 7/23 73.06 (3.42) 26.77 (1.70) 2.53 (1.14)
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State Examination (MMSE) (Lobo et al., 1999), the Global Deterioration
Scale (GDS) (Reisberg et al., 1982), the Functional assessment question-
naire (FAQ) (Pfeffer et al., 1982), the Geriatric Depression Scale (GDS)
(Yesavage et al., 1982), the Hachinski Ischemic Score (Rosen et al.,
1980), the questionnaire for Instrumental Activities of Daily Living
(Lawton and Brody, 1969), and the Functional Assessment Staging
(FAST) (Auer and Reisberg, 1997). MCI patients were classified at the
stage 3 of the Global Deterioration Scale (GDS), and were diagnosed ac-
cording to the criteria of Grundman et al. (2004) and Petersen (2004).
All MCI patients showed memory complaints, abnormal memory
functions, normal general cognitive functions (MMSE N 23), absence
or minimal impairment in activities of daily living. They had no history
of major psychiatric disorders or neurological diseases. None of the
participants were medicated for their condition with cholinesterase
inhibitors (e.g., donepezil) or other cognitive enhancing substances
(e.g., memantine) before MRI and MEG scanning.

MCI patients were further divided in two groups, according to their
clinical and neuropsychological profile. Single-domain MCI (sdMCI)
showed isolated memory impairment, whereas multiple-domain MCI
(mdMCI) showed a memory deficit accompanied by various degrees
of impairment in cognitive domains such as executive functions, visuo-
spatial skills, and/or language. A demographical description of the sam-
ple is included in Table 1. The groups showed no differences in age after
t-test statistical comparison (p N 0.08). Also, no statistical differences
were observed between groups in gender distributions after chi-
squared statistical comparison (p N 0.16). However, revealed by a
paired t-test (p b 0.01), there were differences in education scores and
in mini-mental state examination (MMSE) evaluation.

The research described in this report was approved by the Ethics
Committee of the Hospital Clínico San Carlos, Madrid. All of the partici-
pants signed a written informed consent before completing in any re-
search activities.

MRI acquisition and analysis

All images were collected using a General Electric 1.5 T magnetic
resonance (MR) scanner, using a high-resolution antenna and a homog-
enization PURE filter. 3D T1-weighted anatomical brain MRI scans were
acquired with a Fast Spoiled Gradient Echo (FSPGR) sequence with
parameters: TR/TE/TI = 11.2/4.2/450 ms; flip angle 12°; 1 mm slice
thickness, a 256×256 matrix and FOV 25 cm. Diffusion-weighted im-
ages (DWI) were acquired with a single-shot echo-planar imaging se-
quence with the following parameters: TE/TR 96.1/12000 ms; NEX 3
for increasing the signal to noise ratio (SNR); 2.4 mm slice thickness,
128×128 matrix and 30.7 cm FOV yielding an isotropic voxel of
2.4 mm; 1 image with no diffusion sensitization (i.e., T2-weighted b0
images) and 25 DWI (b = 900 s/mm2).

T1-weighted images were fed to Freesurfer (version 5.1.0) in order
to segment each participant’s cortex into sixty-six anatomical cortical
regions (Fischl et al., 2004) (see Supplementary Table 1 for region
labels). These regions constituted the nodes for the anatomical and
functional networks. Because of the low SNR in sub-cortical MEG source
time-series, we used only cortical nodes. All segmentations were visual-
ly inspected, concluding that there was no need to discard any of the
subjects of the sample due to incorrect grey matter segmentation.
even in the presence of cortical atrophy (see Supplementary Fig. 1 for
an example). Although omitting the connections to subcortical struc-
tures could potentially mislead the cortico-cortical connectivity, this
atlas has still been proven to be useful in previous multimodal fMRI-
DWI studies (Hagmann et al., 2008; Honey et al., 2009).

Diffusion-weighted images were pre-processed with FMRIB's Dif-
fusion Toolbox (FDT-FMRIB Software Library v5.0). Pre-processing
consisted of eddy-current correction,motion correction, and the remov-
al of non-brain tissue using the Brain Extraction Tool (Smith, 2002). The
diffusion tensor model was fit for the pre-processed diffusion images
using least squares fitting with the Diffusion Toolkit Software (DTK
v0.6.2). Tensor deflection tractographywas applied to the diffusion ten-
sor images to build the tractography (Lazar et al., 2003). Stopping
criteria for the streamlines propagation were a maximum angle of
35° between consecutive steps and a lower fractional anisotropy, i.e.
FA b 0.1 (Johansen-Berg et al., 2004). Only the tracts with a length larger
than 15mmwere retained (see Supplementary Fig. 2 for an illustrative
representation of the DWI temporal-signal to noise ratio (tSNR) and the
performance of the tractography). The structural connection between a
pair of nodes (i, j)was defined as thefiber density FDij of the connection,



1 http://cran.r-project.org/web/packages/glasso.

768 J.A. Pineda-Pardo et al. / NeuroImage 101 (2014) 765–777
i.e. number of tracts touching the two regions divided by the total num-
ber of tracts, nijN . We normalized each of the connections by the average

volume of the connected nodes, FDij ¼ nij

N
2

ViþV j
, in order to control for dif-

ferences in node size (Hagmann et al., 2008).

MEG acquisition and analysis

MEG data were acquired with a 306-channel Vectorview system
(Elekta-Neuromag) at the Center for Biomedical Technology (Madrid,
Spain). The system comprises 102 magnetometers and 204 planar
gradiometers on a sensor array, located inside a magnetically shielded
room. Sampling frequency was 1 kHz, and an online anti-alias filter
(0.1–330Hz) was applied. A head position indicator (HPI) system and
a three-dimensional digitizer (FastrakPolhemus) were used to deter-
mine the position of the head with respect to the sensor array during
the recordings. Four HPI coils were attached to the subject (one on
each mastoid, two on the forehead), and their position with respect to
the 3 fiducials (nasion, left and right pre auricular points) was deter-
mined. We recorded vertical eye movements, using two electrodes at-
tached above and below the left eye in a bipolar montage. Resting-
state acquisitions consisted of three-minutes recordings, where subjects
were asked to stay calm and with their eyes closed. External noise was
removed from the MEG data using the temporal extension of Signal-
Space Separation (tSSS) (Taulu and Kajola, 2005) in MaxFilter (version
2.2, Elekta-Neuromag), using as parameters awindow length of ten sec-
onds and a correlation limit of 0.9. Participants’ head movements were
corrected using the MaxMove extension of the software.

Electronic, muscle and ocular artifacts were automatically iden-
tified, and subsequently visually confirmed. The time series were seg-
mented into trials of four seconds avoiding the segments containing
any type of artifacts. Subjects with fewer than 15 clean trials were
discarded. The mean number of clean trials was 25.9 ± 6.9 for the HC
group, 27.8 ± 6.1 for the sdMCI group and 26.2 ± 5.5 for the mdMCI
group.

Datasets were band-pass filtered in five frequency bands: alpha
(8–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), full beta
(13–30 Hz) and a broader band containing the theta, alpha and beta
bands (4–30 Hz). The selection for these specific bands was performed
in concordance with previous results in MEG, which show that it is
the alpha band the most affected in amnestic MCI subjects (Garcés
et al., 2013; Ishii et al., 2010) and in AD (Stam et al., 2009). Also, resting
state fMRI large scale networks were shown to be reproducible in MEG
data for alpha and beta bands (Brookes et al., 2011).

Padding segments of one second to the clean trials were included
to avoid edge effects. The data covariance matrix was computed for
each clean trial and then averaged for each frequency band. Instead of
standard covariance matrix regularization, which is performed by
adding uncorrelated noise (i.e. amplifying the diagonal of the covari-
ance matrix) (Vrba and Robinson, 2000), we used a Bayesian principal
component analysis (PCA) data dimensionality reduction, which has
been demonstrated to work well in this particular domain (Woolrich
et al., 2011).

The underlying currents of the time series observed in the sensor
datasets were reconstructed using a linear constrained minimum vari-
ance beamformer (Van Veen et al., 1997). Lead-fields for all vertices in
a 5-mm grid were obtained using a single-shell Boundary-Element-
Model forward model (Mosher et al., 1999). Lead-fields for magnetom-
eters and planar gradiometers were scaled following Mohseni et al.
(2012) in order to allow the fusion of the sensor time-series. The source
currents were estimated at each vertex of the grid covering the whole
brain. Dipole orientations were estimated by searching for the maxi-
mumpower projection of thedipole (Sekihara et al., 2001). Beamformer
time-series were obtained by multiplying the beamformer coefficients
by the band-pass filtered time series. These were subsequently normal-
ized by the coefficients of variance as suggested in Hall et al. (2013) for
the purpose of connectivity analyses. We followed previous work on
resting state MEG FC (Brookes et al., 2012; Luckhoo et al., 2012) to ob-
tain a single signal for each of the sixty-six cortical regions. For thismat-
ter, in order to avoid polarity swaps, we used the Hilbert transform to
obtain the power envelopes of each time-series and then we averaged
them within each region.

Estimation of the connectivity matrix

We assume the data to have a Gaussian distribution, and we model
the connectivity matrix as the estimated precision matrix, defined as
the inverse of the covariance matrix. We denote the precision matrix
as Θ and the sample covariance matrix as S. A zero in the precision ma-
trix, say Θij = 0, indicates that the corresponding partial correlation is
zero, so that channels i and j are not directly connected (i.e., they are
conditionally independent). The Gaussian assumption implies that de-
pendencies between channels are always of second order, as higher
order moments are always zero under this assumption.

In order to identify the connectivity pattern, we estimate a sparse
precision matrix, i.e. with a number of elements exactly equal to zero.
However, even if the covariance matrix is invertible (full rank), since
data are always finite and noisy, the estimated precision matrix will
have all elements different from zero. A popular way to get around
these problems is to use l1-norm regularisation (Vidaurre et al., 2013),
which provides both a numerically stable solution and a sparse estima-
tion. Within the context of Gaussian inverse covariance matrix estima-
tion, this is achieved through the graphical lasso (Friedman et al.,
2008), which maximises the criterion

logdet Θð Þ−tr SΘð Þ–λ jjΘjj1;

where λ is the regularisation parameter and ‖ ⋅ ‖1 refers to the l1 -norm
operator. To solve this problem, we use a coordinate-descent procedure
that incorporates recent developments to accelerate computations
(Witten et al., 2011).

It is well known that adaptive regularisation, which uses adaptive
weights for regularising the different coefficients, improves the efficien-
cy of the estimator and leads to more accurate sparsity patterns (Zou,
2006). An adaptive version of the graphical lasso can be readily obtained
by maximising instead

logdet Θð Þ−tr SΘð Þ–λ jjW � Θjj1;

whereW is amatrix of weights with elementsWij ¼ 1=
ffiffiffiffiffi
Sij

q
, and the op-

erator ⋅ denotes element-wise multiplication. The same algorithm can
be used to solve this problem. Thus, the adaptive setting is completely
driven by the sample covariance matrix of the functional data.

In our approach, we assign values toWij based on structural connec-
tivity information. In particular, we setWij ¼ 1=

ffiffiffiffiffiffiffiffiffi
FDij

p
. By doing this, we

inform the pattern of functional connectivity by a priori structural infor-
mation in order to estimatemoremeaningful networks.Wehave imple-
mented the three aforementioned flavours of the graphical lasso: non-
adaptive graphical lasso (GL), functional data based adaptive graphical
lasso (GLa), and structural data based adaptive graphical lasso (GLd).
The computation of the Graphical Lasso was performed in R with
the glasso Package,1 and we base on this to implement the adaptive
varieties.

We used a 10-fold cross-validation to assess themethods in terms of
log-likelihood and density of the networks. Within each fold we took
the NIM11576 that minimizes the Bayesian Information Criteria (BIC),
which amounts to choosing the model with the largest approximate
posterior probability (Hastie et al., 2009). Model selection is performed

http://cran.r-project.org/web/packages/glasso
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within a routine in which we define an initial sequence of λ values. We
estimate the precisionmatrices for each λ and compute the BIC statistic.
We select λmin, which corresponds to theminimumBIC, andwe define a
new sequence of λ values within a relatively small vicinity of λmin. Fol-
lowing this procedure, we sharpen the search interval up to three
times to obtain a final λmin. We limit the search to a maximum network
density of 20%. This threshold is the number of non-zero links in the av-
erage of the structural networks across subjects, and is in general agree-
mentwith previous studies (Hinne et al., 2014). The final networks that
were used to predict the conditions of MCI (see next Section 2.5) were
obtained using the mean λ across the cross-validation folds.

Note that the BIC criterion needs an estimation of the effective
sample size. When data are independent and identically distributed,
this number equals the actual number of data points. In our case, each
data point corresponds to a MEG measurement, so data is strongly
autocorrelated. As a consequence, the effective sample size is lower
than the number of data points. In this paper, we obtain the effective
sample size by dividing the number of data points by one plus two
times the sum of the autocorrelation values, for lags from 1 to a suffi-
ciently high number – in practice, until the autocorrelation vanishes
(Geyer, 1992). This is implemented in the function ess from the R
mcmcse Package.2
Pattern classification

We chose four different machine-learning classifiers to evaluate the
accuracy of the predictions for the three network estimation methods:
k-nearest neighbour (k-nn), linear discriminant analysis (LDA), support
vector machine with polynomial (SVM), and radial basis functions
(SVMrbf) kernels. Validation of the classification algorithms was per-
formed with 10-fold cross-validation. For each run of the classification
algorithms (e.g. one per graphical lasso approach, per frequency band,
and per possible between-group combination), we performed a feature
selection using non-parametrical Mann-Whitney statistical comparison
between groups. The number of input features and the parameters of
the classification algorithms described below were chosen by a nested
10-fold cross-validation procedure. The classification results of each
fold were aggregated to the confusion matrix to obtain accuracies
(rate of samples correctly classified), sensitivities (rate of samples in
the second group correctly classified; see tables below), and specificities
(rate of samples in the first group correctly classified).

LDA assumes that different groups generate observations based on
different multivariate Gaussian distributions, so that, given two given
groups, it is possible to define a boundary hyperplanewhere the proba-
bility for an observation to belong to any of the two groups is the same
(Hastie et al., 2009). This boundary is then used to assign an observation
to a group. We employed a regularized variant of LDA including a vari-
able γ, in the interval [0,1], that attempts to shrink the group covariance
matrices towards a diagonal matrix (Guo et al., 2007).

The k-nn classifier non-parametrically assigns an observation to the
group to which the majority of the k closest training observations
(nearest neighbours) belong (Hastie et al., 2009). The k closest neigh-
bours were defined in terms of Euclidean distances, and k was chosen
within the range [2,10].

SVM also defines a separating hyperplane in the feature space.
The best hyperplane in this case will be the one with the largest margin
between the two groups, where the margin is the distance between
the closest samples to the hyperplane (Cortes and Vapnik, 1995). For
the case of non-separable datasets, the margin is transformed to a soft
margin, indicating that the hyperplane separates many but not all data
points. Points in the feature space are typically mapped to some conve-
nient space by means of the function ϕ(x) for which we only need to
2 http://cran.r-project.org/web/packages/mcmcse.
specify a kernel so that it holds κ(x, x′) = 〈ϕ(x), ϕ(x ′)〉, where (x, x′)
are two instances in the feature space and 〈⋅〉 represents the dot
product. For SVM, we employed polynomial kernels κp(x, x′) = (1 +
〈x, x′〉)d with d ranging from one to six. For SVMrbf, we used radial
basis functions kernels κrbf(x, x′) = exp(〈(x − x′), (x − x′〉)/2σ2), with
σ taking values in 10[−5,−4,…,4,5].

Results

We first compare the ability of the different models to describe the
data by reporting the cross-validated log-likelihood, which, assuming
a Gaussian distribution, represents how well the precision matrix ex-
plains the (zero-mean) data set. Hence, the higher the log-likelihood,
the more faithfully this model represents the data.

Fig. 2 shows the average log-likelihoods for all three graphical
lasso approaches and frequency bands. Although the adaptive ver-
sions, which introduce penalizations based on the inverse of the
sample functional covariance matrix (GLa) or on the inverse of the
structural connectivity weights (GLd), present very close likelihoods,
they both are higher than the non-adaptive graphical lasso (GL).
These differences are only significant in the alpha band (p b 0.05
after paired t-test statistical comparisons for GLa-GL), but were not
significant after multiple comparisons correction using False Discov-
ery Rate (FDR).

Fig. 3 shows boxplots with the densities (ratio of non-zero con-
nections in the precision matrices) for all methods and frequency
bands. Interestingly, the densities were higher for the GL than for
the GLa or GLd. This, along with the above likelihood results, sug-
gests that the adaptive approaches lead to more robust network to-
pographies with fewer spurious connections. The differences were
statistically significant (qFDR b 0.05) for GLa-GL and GLd-GL in all
frequency bands, but, with the exception of alpha band, no statistical
differences were observed between the GLa and GLd. In general, op-
timal densities for all methods and frequency bandswere close to the
maximum (20%).

For each type of functional connectivity dataset (GL, GLa and GLd),
the aforementioned machine-learning classifiers were run to estimate
clinical group predictions using 10-fold cross-validation.

In the classification between HC and sdMCI, the best performance
was observed for LDA and SVMrbf classifiers, achieving up to 86% of ac-
curacy. Table 2 shows the accuracies along with the specificities and
sensitivities. The best classification results were obtained in alpha,
high beta and broadband ranges of frequencies. Themaximumachieved
Fig. 2. Boxplots of the log-likelihood values for the three graphical lasso approaches:
GL, GLa and GLd. The asterisk indicates that the distributions differ with significance
p b 0.05 after paired t-test statistical comparison.

http://cran.r-project.org/web/packages/mcmcse
image of Fig.�2


Fig. 3. Boxplots of the density values for the three implemented graphical lasso ap-
proaches: GL, GLa and GLd. The double asterisk indicates that the distributions differ
with significance p b 0.05 after paired t-test statistical comparison, and survived a False
Discovery Rate multiple comparisons correction (qFDR b 0.05).
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accuracy was of 86.27% (spec. 89.66% sens. 81.82%) obtained for GLd
using broadband data. The classifier employed to obtain this accuracy
was LDA and the chosen configuration parameters after the 10-fold
cross-validation were 310 input features and γ = 0.5. The best accura-
cies for GL 82.35% (spec. 89.66% sens. 72.73%) and GLa 84.31% (spec.
89.66% sens. 77.27%) were obtained in the alpha band with SVMrbf
and LDA classifiers respectively. Although these accuracies are close to
the ones observed with GLd, it is clear that all four classifiers agree in
that GLdwith wide frequency band data offers the best predictor to dis-
criminate between HC and sdMCI.

Fig. 4A−C represents, in a brain mesh, highly relevant connections
that were selected by the previous LDA classifier in at least 9 of the
10-fold cross-validation testings. The width of the connections repre-
sents the median of the weights that the classifier assigned to this con-
nection in each fold. For the sake of interpretation, only the top 1% of
relevant connections are represented. Fig. 4D shows a matrix plot that
represents in its lower part the number of folds that a specific link
was selected and the median value assigned by the classifier across
folds. The most important connections in this classification included
Table 2
10-fold cross-validated accuracies for the classification betweenHC and sdMCI. The table shows
the three regularization methods (GL, GLa, GLd) and the four classifiers evaluated. Accuracies h

HC vs sdMCI

GL

alpha Knn 72.55 (79.31; 63.64)
LDA 80.39 (93.10; 63.64)
SVM 64.71 (75.86; 50.00)
SVMrbf 82.35 (89.66; 72.73)

Low beta Knn 72.55 (62.07; 86.36)
LDA 70.59 (68.97; 72.73)
SVM 66.67 (65.52; 68.18)
SVMrbf 68.63 (72.41; 63.64)

High beta Knn 70.59 (65.52; 77.27)
LDA 82.35 (86.21; 77.27)
SVM 66.67 (75.86; 54.55)
SVMrbf 68.63 (93.10; 36.36)

Full beta Knn 68.63 (62.07; 77.27)
LDA 74.51 (82.76; 63.64)
SVM 72.55 (79.31; 63.64)
SVMrbf 76.47 (86.21; 63.64)

Broadband Knn 74.51 (75.86; 72.73)
LDA 78.43 (82.76; 72.73)
SVM 74.51 (75.86; 72.73)
SVMrbf 80.39 (82.76; 77.27)
temporal regions (right and left transverse temporal gyri; left entorhi-
nal cortex; left parahippocampal gyrus), frontal regions (left caudal
middle frontal gyrus), and cingulate regions (left isthmus of cingulate
gyrus).

Table 3 shows the accuracies in the classification between HC and
mdMCI. The maximum achieved accuracy was of 81.36% (spec. 82.76%
sens. 80.00%). This accuracy was achieved with GLd for the frequency
band containing the full beta [13−30 Hz], and employing a LDA classi-
fierwith 385 input features and γ=0.9. Figs. 5A–C depicts themost rel-
evant selected features, following the same inclusion criteria described
for Fig. 4.

The most relevant connections in the classification between HC and
mdMCI were linked with temporal regions (right and left transverse
temporal gyri, left entorhinal cortex, right and left parahippocampal
gyri) and cingulate regions (right and left rostral anterior cingulate cor-
tices, right isthmus of cingulate gyrus). These regions had also an impor-
tant role in the classification between HC and sdMCI, where, besides,
connections with frontal regions acquired more relevance. These in-
clude the right frontal pole, the left rostral middle frontal gyrus and
the right pars triangularis.

In the classification between sdMCI and mdMCI, the LDA classifier
showed the best outcomes (see Table 4). Themaximum achieved accu-
racy was observed for GL in the broadband 84.62% (spec. 81.82% sens.
86.67%). This outcome was obtained with a LDA classifier with ten
input features and γ = 0.5 (see Figs. 6 A-C for a graphical description
of the most frequently selected features). In Fig. 6, many fewer links
were selected for the classification between sdMCI and mdMCI. In this
case, themaximum accuracywas achievedwith only ten input features,
which makes the number of depicted links (selected at least in nine of
the ten folds) low. Note that the best accuracies for GLa and GLd were
also obtained with LDA classifiers, and for the alpha and broadband
datasets respectively.

Themost important connections in the classification between sdMCI
and mdMCI included occipital regions (right and left lingual gyri; right
and left lateral occipital gyri), cingulate regions (right isthmus of cingu-
late gyrus) and frontal regions (right caudal middle frontal gyrus, right
postcentral gyrus). In this scenario, connections between temporal re-
gions were not as diagnostic as they were before for HC-sdMCI and
HC-mdMCI. This result is consistentwith the cognitive state of these pa-
tients, as both groups sdMCI and mdMCI have a memory impairment.
While in the classification between HC-sdMCI or between HC-mdMCI
themean accuracies (specificities; sensitivities) in percentages for allfive frequency bands,
igher than 80% are highlighted.

GLa GLd

72.55 (68.97; 77.27) 72.55 (72.41; 72.73)
84.31 (89.66; 77.27) 82.35 (93.10; 68.18)
76.47 (82.76; 68.18) 76.47 (86.21; 63.64)
80.39 (86.21; 72.73) 80.39 (93.10; 63.64)
72.55 (65.52; 81.82) 68.63 (51.72; 90.91)
74.51 (75.86; 72.73) 72.55 (89.66; 50.00)
68.63 (75.86; 59.09) 66.67 (68.97; 63.64)
72.55 (79.31; 63.64) 68.63 (72.41; 63.64)
72.55 (79.31; 63.64) 74.51 (79.31; 68.18)
76.47 (79.31; 72.73) 76.47 (86.21; 63.64)
70.59 (75.86; 63.64) 80.39 (86.21; 72.73)
76.47 (96.55; 50.00) 74.51 (86.21; 59.09)
70.59 (68.97; 72.73) 68.63 (62.07; 77.27)
68.63 (75.86; 59.09) 76.47 (82.76; 68.18)
64.71 (65.52; 63.64) 68.63 (75.86; 59.09)
66.67 (96.55; 27.27) 72.55 (89.66; 50.00)
72.55 (79.31; 63.64) 80.39 (72.41; 90.91)
74.51 (82.76; 63.64) 86.27 (89.66; 81.82)
74.51 (75.86; 72.73) 74.51 (82.76; 63.64)
72.55 (79.31; 63.64) 82.35 (89.66; 72.73)
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Fig. 4. Selected features in the LDA classifier for HC-sdMCI for the broadband andGLd (accuracy 86.27%). A–C panels represent three views (sagittal, coronal and axial) of the selected links.
The width and color (black to soft brown) of these links grows proportional to themedian of the weights assigned to the links by the classifier across the ten folds of the cross-validation
testing procedure. The size of the ball that represents the node is proportional to the number of links converging at this node. In panel D, the upper triangular matrix shows the median
of the assigned weights and the lower triangular matrix represents the number of folds in which a specific link has been selected. The nodes were grouped according to brain lobes: FL –
Frontal Lobe; PL – Parietal Lobe; TL – Temporal Lobe; OL – Occipital Lobe; C – Cingulate Cortex. See Supplementary Table 2 for a ranking of the links with the highest weights.
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the GLd offers the best results, in the classification between sdMCI-
mdMCI the best accuracies were obtained by GL (the non-adaptive
case). In general, datasets in alpha and broadbands provided in general
Table 3
10-fold cross-validated accuracies for the classification between HC and mdMCI. The table sh
bands, three regularization methods (GL, GLa, GLd) and the four classifiers evaluated. Accuraci

HC vs mdMCI

GL

alpha Knn 62.71 (62.07; 63.33)
LDA 69.49 (75.86; 63.33)
SVM 66.10 (48.28; 83.33)
SVMrbf 59.32 (55.17; 63.33)

Low beta Knn 69.49 (58.62; 80.00)
LDA 71.19 (58.62; 83.33)
SVM 66.10 (68.97; 63.33)
SVMrbf 66.10 (79.31; 53.33)

High beta Knn 59.32 (65.52; 53.33)
LDA 62.71 (62.07; 63.33)
SVM 55.93 (58.62; 53.33)
SVMrbf 57.63 (27.59; 86.67)

Full beta Knn 62.71 (79.31; 46.67)
LDA 71.19 (72.41; 70.00)
SVM 69.49 (75.86; 63.33)
SVMrbf 62.71 (65.52; 60.00)

Broadband Knn 66.10 (55.17; 76.67)
LDA 67.80 (75.86; 60.00)
SVM 61.02 (62.07; 60.00)
SVMrbf 62.71 (65.52; 60.00)
the best classification results. Consistent with previous reports, alpha
is traditionally considered to be the main affected band in these
amnestic MCI patients (Garcés et al., 2013; Ishii et al., 2010). However,
ows the mean accuracies (specificities; sensitivities) in percentages for all five frequency
es higher than 80% are highlighted.

GLa GLd

64.41 (75.86; 53.33) 64.41 (75.86; 53.33)
76.27 (72.41; 80.00) 71.19 (62.07; 80.00)
66.10 (55.17; 76.67) 67.80 (58.62; 76.67)
67.80 (72.41; 63.33) 64.41 (65.52; 63.33)
67.80 (75.86; 60.00) 62.71 (55.17; 70.00)
71.19 (72.41; 70.00) 76.27 (86.21; 66.67)
69.49 (68.97; 70.00) 66.10 (65.52; 66.67)
69.49 (68.97; 70.00) 66.10 (72.41; 60.00)
66.10 (65.52; 66.67) 64.41 (62.07; 66.67)
69.49 (68.97; 70.00) 71.19 (65.52; 76.67)
62.71 (58.62; 66.67) 66.10 (62.07; 70.00)
59.32 (48.28; 70.00) 69.49 (65.52; 73.33)
62.71 (72.41; 53.33) 62.71 (72.41; 53.33)
76.27 (86.21; 66.67) 81.36 (82.76; 80.00)
64.41 (62.07; 66.67) 69.49 (65.52; 73.33)
66.10 (62.07; 70.00) 67.80 (68.97; 66.67)
61.02 (86.21; 36.67) 62.71 (72.41; 53.33)
74.58 (82.76; 66.67) 71.19 (75.86; 66.67)
66.10 (75.86; 56.67) 61.02 (58.62; 63.33)
66.10 (75.86; 56.67) 59.32 (62.07; 56.67)
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Fig. 5. Selected features in the LDA classifier for HC-mdMCI in the full beta band for GLd (accuracy 81.36%). A–C panels are represent three views (sagittal, coronal and axial) of the selected
links. The width and color (black to soft brown) of these links grows proportional to the median of the weights assigned to the links by the classifier across the 10-fold of the cross-
validation testing procedure. The size of the ball that represents the node is proportional to the number of links converging at it. In panel D, the upper triangularmatrix shows themedian
of the assignedweights and in the lower triangularmatrix represents the number of folds inwhich a specific link has been selected. The nodeswere grouped according to brain lobes: FL –
Frontal Lobe; PL – Parietal Lobe; TL – Temporal Lobe; OL – Occipital Lobe; C – Cingulate Cortex. See Supplementary Table 2 for a ranking of the links with the highest weights.
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we also provide evidence that the beta band also contributes to the clas-
sification, at least in those MCI patients with multiple impaired cogni-
tive domains.
Table 4
10-fold cross-validated accuracies for the classification between sdMCI and mdMCI. The table s
bands, the three regularization methods (GL, GLa, GLd) and the four classifiers evaluated. Accu

sdMCI vs mdMCI

GL

alpha Knn 59.62 (68.18; 53.33)
LDA 71.15 (63.64; 76.67)
SVM 57.69 (4.55; 96.67)
SVMrbf 63.46 (18.18; 96.67)

Low beta Knn 69.23 (50.00; 83.33)
LDA 67.31 (45.45; 83.33)
SVM 65.38 (50.00; 76.67)
SVMrbf 65.38 (36.36; 86.67)

High beta Knn 65.38 (45.45; 80.00)
LDA 71.15 (68.18; 73.33)
SVM 71.15 (36.36; 96.67)
SVMrbf 67.31 (54.55; 76.67)

Full beta Knn 63.46 (45.45; 76.67)
LDA 67.31 (50.00; 80.00)
SVM 63.46 (36.36; 83.33)
SVMrbf 63.46 (36.36; 83.33)

Broadband Knn 78.85 (72.73; 83.33)
LDA 84.62 (81.82; 86.67)
SVM 67.31 (54.55; 76.67)
SVMrbf 78.85 (72.73; 83.33)
In summary, although the accuracies obtained using SVMrbf were
high in general (in particular for the classification between HC and
sdMCI), the best accuracies were obtained using LDA, suggesting that
hows the mean accuracies (specificities; sensitivities) in percentages for all five frequency
racies higher than 80% are highlighted.

GLa GLd

67.31 (54.55; 76.67) 65.38 (36.36; 86.67)
82.69 (63.64; 96.67) 78.85 (54.55; 96.67)
69.23 (59.09; 76.67) 63.46 (59.09; 66.67)
76.92 (72.73; 80.00) 63.46 (27.27; 90.00)
67.31 (81.82; 56.67) 67.31 (77.27; 60.00)
69.23 (36.36; 93.33) 69.23 (54.55; 80.00)
59.62 (13.64; 93.33) 61.54 (22.73; 90.00)
69.23 (59.09; 76.67) 61.54 (36.36; 80.00)
63.46 (100.00; 36.67) 57.69 (90.91; 33.33)
69.23 (77.27; 63.33) 71.15 (72.73; 70.00)
67.31 (68.18; 66.67) 63.46 (50.00; 73.33)
65.38 (27.27; 93.33) 61.54 (13.64; 96.67)
59.62 (40.91; 73.33) 69.23 (50.00; 83.33)
67.31 (36.36; 90.00) 69.23 (45.45; 86.67)
61.54 (18.18; 93.33) 65.38 (50.00; 76.67)
59.62 (4.55; 100.00) 61.54 (9.09; 100.00)
71.15 (68.18; 73.33) 71.15 (59.09; 80.00)
78.85 (68.18; 86.67) 80.77 (68.18; 90.00)
63.46 (45.45; 76.67) 65.38 (45.45; 80.00)
73.08 (50.00; 90.00) 76.92 (77.27; 76.67)
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Fig. 6. Selected features in the LDA classifier for sdMCI-mdMCI in broadband and with GL (accuracy 84.62%). Panels A-C represent three views (sagittal, coronal and axial) of the selected
links. The width and color (black to soft brown) of these links grows proportional to the median of the weights assigned to the links by the classifier across the 10-fold of the cross-
validation testing procedure. The size of the ball that represents the node is proportional to the number of links converging at it. In panel D, the upper triangularmatrix shows themedian
of the assigned weights and the lower triangular matrix represents the number of folds in which a specific link has been selected. The nodes were grouped according to brain lobes: FL –
Frontal Lobe; PL – Parietal Lobe; TL – Temporal Lobe; OL – Occipital Lobe; C – Cingulate Cortex. See Supplementary Table 2 for a ranking of the links with the highest weights.

773J.A. Pineda-Pardo et al. / NeuroImage 101 (2014) 765–777
linearity is the best,most robust choice in this context.When it comes to
the frequency contents, the alpha and broadband datasets got the best
accuracies in the discrimination of sdMCI subjects, and the beta band
gave the best performance in the classification between HC andmdMCI.

Besides the FC classification accuracies, we included the accuracies
obtained from the power of the Hilbert-envelope time-series (see
Supplementary Table 3) and from the FD matrices (see Supplementary
Table 4). None of these results were better than 80% accuracy. The best
results were obtained using the power of the envelopes in the broad-
band data as input features, reaching 78.43% (spec. 72.41%; sens.
86.36%) for the discrimination between HC and sdMCI. When using
the FD matrices, the best results were 70.59% (spec. 72.41%; sens.
68.18%) for HC-sdMCI and 71.19% (68.97%; 73.33%) for HC-mdMCI.

Discussion

In this paper, we have used three different varieties of the graphical
lasso (Friedman et al., 2008), the non-adaptive graphical lasso, the func-
tional adaptive graphical lasso, and the structural adaptive graphical
lasso, to obtain sparse precisionmatrices explaining the direct function-
al connectivity between pairs of brain regions. To our knowledge, this is
the first time that an adaptive sparse estimation has been applied to
MEG data. The three approaches were evaluated in terms of log-
likelihood, the network density, and the performance in the classifica-
tion between three groups: healthy controls, amnesticMCIwith a single
(sdMCI) or multiple domains (mdMCI) affected.
In summary, we observed that, by including structural soft con-
straints, the classification accuracies were improved between MCI and
HC groups in most cases. The best classification accuracies were
obtained for the alpha and broadband datasets when discriminating
sdMCI subjects. For HC and mdMCI, the full beta band achieved the
best classification. Among the functional connections thatwere selected
to discriminate between sdMCI andHC,we found several connections to
temporal regions and to the posterior part of the cingulate cortex
(Davatzikos et al., 2011; Sorg et al., 2007). The engagement of connec-
tions to frontal regions in the classification of mdMCI subjects agrees
with the symptomatology of this condition (Schroeter et al., 2012).

The contribution of structural connectivity

Single-modality biomarkers have been widely employed for the di-
agnosis of MCI or AD. As an advantage, they rely on simple imaging
protocols, requiring less acquisition effort and costs. Nevertheless, we
believe that the integration of information from different imaging bio-
markers can considerably improve diagnosis and prognosis efficacy.
There is evidence that structurally informed functional connectivity
provides a more accurate representation of the real transfer of informa-
tion that takes place in brain networks (Hinne et al., 2014; Ng et al.,
2012). These approaches, however, have only been tested in healthy
subjects, and have never been applied to the diagnosis of brain diseases.
We demonstrate here that the inclusion of structural connectivity in the
estimation model of functional connectivity improves the accuracy in
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the classification betweenMCI and HC: up to 3% of improvement for the
sdMCI group (see Table 3) and up to 10% of improvement for themdMCI
group (see Table 4). In the classification between sdMCI and mdMCI,
however, GL provides the best accuracy, perhaps because the structural
connectivity differences are too heterogeneous, reflecting the variety of
symptoms of the mdMCI group.

Our initial hypotheses were: first, that using the structural connec-
tivity to guide the estimation of the networkwould improve the estima-
tion of the functional connectivity; and second, that the classification
accuracies between groups would benefit from this multimodal fusion.
As mentioned above, the log-likelihoods quantify how well the model
(in this case, the estimated precision matrix) describes the data under
a certain distribution of probability (in this case, themultivariate Gauss-
ian distribution). In our experiments, the log-likelihood increasedwhen
guided by the structural connectivity in comparison to the case of a
homogeneous regularization. When comparing the log-likelihoods be-
tween the adaptive cases GLa and GLd, the results are mostly indistin-
guishable. GLa uses the empirical covariance matrix computed from
the functional data in order to guide the estimation of the network
and, hence, in terms of the ability of describing the functional data, it
has a head start. The fact that the log-likelihood is roughly equal for
GLd and GLa (and higher than GL) is indeed encouraging, considering
that the adaptive penalty of GLa is defined using the samedatamodality
(functional data) that we use for computing the likelihood. This result
suggests a genuine link between functional and anatomical connectivi-
ty, consistentwith findings elsewhere (Cabral et al., 2013;Greicius et al.,
2009; Hinne et al., 2014; Honey et al., 2009).

Disruption of functional networks in MCI

The classification of MCI using whole-brain connectivity is of grow-
ing clinical promise. Previous attempts distinguished between MCI
that developed Alzheimer’s disease and HC with a 90% of accuracy
(Shao et al., 2012) by using just structural connectivity. Here we obtain-
ed an accuracy of around 70% in the discrimination between groups
when using only SC between cortical regions. This contrast of accuracies
might be in part due to differences in the methodological pipeline.
For example, we used deterministic tractography, and we did not
included sub-cortical connections. Most likely, however, this is attribut-
able to the advanced disease stage of the subjects, who would probably
have had considerable cortical and sub-cortical atrophy that decreased
the tract density, thus enhancing the discriminability power of the
tractography.

In another study using graph-theory metrics from fMRI functional
connectivity networks, Wee et al. classified amnestic MCI subjects ver-
sus HC with an accuracy of 86% (Wee et al., 2012b). This accuracy was
increased to 96%when they concatenated functional and structural con-
nectivity features (Wee et al., 2012c). These two studies had clear limi-
tations: first, the reduced sample size (ten subjects in the sdMCI group)
hinders the interpretation of the results; second, it is not clear whether
the feature selection step was carried out on the entire data (including
the testing data which is used to evaluate the model). In this case, this
would result in an overestimation of the obtained accuracies. Also,
leave-one-out cross-validation is known to be a high variance estimator
of the classification accuracy (Hastie et al., 2009), and 10-fold cross-
validation is a more reliable alternative (Kohavi, 1995).

The same group evaluated the classification performance in a similar
sample using a group-constrained sparse estimation of fMRI connectiv-
ity through l2-regularization, achieving accuracies of 84% in the best
case (Wee et al., 2014). In a third paper, they use sparse multivariate
autoregressive modelling to compute an effective connectivitymeasure
similar to Granger causality (Li et al., 2014). This time they achieved a
mean accuracy of 91%, which turned out to be higher than those obtain-
ed using full-connected matrices (Pearson correlations). This result
suggested that sparse functional networks provide amore effective rep-
resentation of the whole brain connectivity. Note that fMRI is sensitive
to other factors than brain activity, as the cerebral perfusion quantified
as the cerebral blood volume/flow. Hypo-perfusion in regions such as
the posterior cingulate has been related to cortical atrophy and cogni-
tive decline in MCI patients (Chen et al., 2011; Lacalle-Aurioles et al.,
2014). Thus, it is certainly possible that cerebral perfusion could also
have contributed to the differences observed with the mentioned fMRI
studies.

Note that not all of the patients included in our samplewill necessar-
ily develop Alzheimer’s dementia (non-converters), and, from those
that will develop Alzheimer’s dementia (converters), the time to the
conversionwill likely vary. These two factors, aswell as the possible de-
velopment of other kinds of dementia, should be monitored on this
sample, and the classifiers could be used to predict between an immi-
nent development of dementia, a delayed development of dementia,
and a return to the healthy condition.

The connections that most frequently distinguished both groups
from the healthy control group include regions of the cingulate cortex
that agree with those of previous findings in similar populations
(Davatzikos et al., 2011). These regions were previously observed to
have decreased functional connectivity in resting state networks de-
rived from independent component analysis (Sorg et al., 2007). Connec-
tionswith regions of frontal cortexwere often selected, including caudal
middle frontal gyri, rostral middle frontal gyri, frontal poles, and the
pars triangularis (Grady et al., 2003). Interestingly, both HC-sdMCI and
HC-mdMCI classifications assigned a similar importance to connections
with regions of the temporal cortex, including transverse temporal gyri,
enthorinal cortices and parahippocampal gyri. This seems reasonable, as
thememory cognitive decline that both groups presentmight be related
to a malfunctioning of regions in the temporal cortex. However, the im-
portance in the classification of connections with frontal regions was
much higher in the classification between HC-mdMCI. The fact that
the mdMCI group presents a major executive impairment in compari-
son to the sdMCI group canmotivate the role of this frontal connections
as a clinical biomarker (Schroeter et al., 2012). It has also been reported
that connections between frontal and temporal cortices are diminished
in Alzheimer’s patients (Stam et al., 2009), i.e., at a more advanced dis-
ease stage. Themedial frontal and temporal regions have been implicat-
ed in a “default-mode” network. This network comprises a set of regions
with high connectivity during rest (Buckner et al., 2008), which become
deactivated when performing any attention-demanding task. The level
of activity in this network at rest has been observed to be lowered in in-
dividuals at risk of Alzheimer’s (Petrella, 2013; Vogelaere et al., 2012;
Wang et al., 2013).

In the classification between sdMCI-mdMCI, themaximum accuracy
was obtained with ten input features. These connections included re-
gions of the occipital cortex (i.e. lateral occipital and lingual gyri), cingu-
late cortex (isthmus of cingulate gyrus) and frontal cortex (caudal
middle frontal and postcentral gyri). In other studies, the posterior
part of the cingulate, including the isthmus cingulate, showed reduced
metabolic activity in a set of patients that later developed Alzheimer’s
dementia (Minoshima et al., 1997). Additionally to the posterior cingu-
late, the medial temporal lobe and the inferior parietal lobe showed de-
creased metabolic activity in AD patients (Gusnard and Raichle, 2001).
This decreased metabolism has been found to correlate with pathologi-
cal atrophy of the entorhinal and hippocampal cortices (Huang et al.,
2002). According to Zhou et al. (2008), disruption of the anatomical
connections from the posterior cingulate and the hippocampus to the
whole brain in early AD patientswere related to immediate recall mem-
ory scores. All these findings indicate that the posterior cingulate cortex
is strongly involved in the course of AD, and the fact that connections
with the isthmus cingulate are present in the classification between
sdMCI-mdMCI might indicate that the connectivity with this region, as
revealed by the proposed approaches, could be a useful connectivity-
based biomarker to define the risk of converting to dementia.

For the sake of comparison, we have included classifiers using the
power of the Hilbert envelopes time-series as input features. We
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observed that, in general, the accuracieswere lower than those obtained
using the graphical lasso approaches.
Methodological issues and limitations

We should note a few limitations of this study. First, it is still un-
known whether the MCI patients of this sample will convert to AD.
This is important, as the classifier could lose predictive accuracy due
to high heterogeneity within the groups. As an example, we evaluated
this heterogeneity in terms of MMSE, as it seems that it could be a dif-
ferentiating factor between groups (see Table 1). The misclassified
subjects, however, were not significantly different from the rest of
the group (i.e. the correctly classified subjects) according to a non-
parametrical Mann-Whitney statistical comparison (p N 0.05) for any
of the classifications.

Second, we have restricted ourselves to the alpha and beta bands.
The selection of the frequency bands was made according to previous
findings in MEG resting-state networks (Brookes et al., 2011) and to
previous MEG literature in MCI (Garcés et al., 2013; Ishii et al., 2010).
However, the impact of introducing structural priors for estimating
functional connectivity in other classical frequency bands, such as
delta (0.5–4Hz), theta (4–8Hz) and gamma (30–50Hz), was not evalu-
ated and is still interesting. Future work should assess thoroughly the
effect of structural priors in these frequency bands as well as the corre-
sponding classification accuracies. The paper is also restricted to station-
ary measures of functional connectivity. Recent work using Hidden
Markov Models (HMMs) has shown MEG resting state networks
switching on very fast time-scales, on the order of 200 ms (Baker
et al., 2014). Futurework could assess the use of structural priors to con-
strain the cross-region interactions in the HMM observation models.

Third, the quantification of structural connectivity is prone to errors.
Fiber crossing, bending or kissing are unresolved issues when using
single DTI as a model of water diffusion. More complex models, such
as q-ball (Tuch, 2004) or spherical deconvolution (Tournier et al.,
2004) are potentially useful alternatives. However, the limited number
of encoding directions in our data hinders this estimation. Future MRI
protocols will include higher angular resolution diffusion schemes in
order to achieve a better characterization of the structural connectivity.

Fourth, no standardized brain parcellation is fully agreed by the
scientific community. There is evidence that different parcellation
schemes give rise to different network topographies (Zalesky et al.,
2010). The effects that this parcellation would have on the integration
of structural and functional information is still an open question. Here,
we employed a cortical anatomical parcellation of sixty-six regions
which has been previously employed in multi-modal whole-brain net-
work studies (Hagmann et al., 2008; Honey et al., 2009). In future anal-
yses, we will test the impact of structural connectivity on the functional
connectivity for different functional or anatomical parcellation schemes.

Fifth, we have not applied any leakage correction. Although there
may be some benefits to using leakage correction due to removal of
false positives (Maldjian et al., 2014), state-of-the-art methods are
over-conservative in the sense that they remove all the zero-lag correla-
tions (including the genuine ones), resulting in an (unknown) extent of
true positives decrement. For this reason we considered that standard
leakage correction could have unpredictable results in the context of
precision matrix estimation and therefore chose not to apply it in
these experiments. The inclusion of a structural prior, which is not con-
taminated by leakage, could havemitigated this effect as well. Note also
that, despite this caveat (which is equally applicable to all the methods
we compared), the results of the classification were still quite accurate.
In the future, we will investigate the trade-off between true and false
positives decrement by leakage correction, and, potentially,wewill con-
sider how to integrate leakage correction within the precision matrix
estimation, perhaps by an inclusion of another adaptive penalty where
closer links are more heavily penalised. This could be considered as a
softer (less conservative) alternative to the usual orthogonalisations
(Brookes et al., 2012; Maldjian et al., 2014).

Finally, the sample size of this study, although higher than previous
investigations on HC-MCI discrimination (Shao et al., 2012; Wee et al.,
2014, 2012c), is still moderate. Nevertheless, the presented results re-
main promising, and illustrate the potential of combining different mo-
dalities, for which we provide a simple but efficient method to carry
through this integration.

Conclusion

In this paper, we provide for the first time a multimodal integration
of MEG-DWI for the estimation of sparse whole-brain networks. This
integration has been compared in terms of classification accuracy be-
tween HC and MCI to two single-modality approaches: using the
power of the Hilbert envelope time-series and single-modality SC. The
conclusion is that GL-based techniques for estimating FC can yield
higher accuracies than single modality approaches. The inclusion of SC
in our FC estimation further improves the accuracies for HC-MCI dis-
crimination but not forMCI subgroups classification. The reported accu-
racies are analogous to other results obtained from samples of amnestic
MCI subjects using whole brain fMRI connectivity approaches (Wee
et al., 2014, 2012a,b). We conclude that whole brain MEG connectivity
is a powerful biomarker of MCI and that the inclusion of SC increases
the classification potential. Future studies with larger datasets and clin-
ical follow-up will contribute to validate the effectiveness of the pro-
posed integration.
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