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Marı́a Eugenia Lópeza,b,c,∗, Agustı́n Turreroc,d, Pablo Cuestab, David López-Sanzb,e,
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aLaboratory of Neuropsychology, Universitat de les Illes Balears, Palma de Mallorca, Spain
bLaboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense
University of Madrid and Technical University of Madrid, Spain
cInstitute of Sanitary Investigation [IdISSC], San Carlos University Hospital, Madrid, Spain
dDepartment of Biostatistics and Operational Investigation, Complutense University of Madrid, Spain
eDepartment of Basic Psychology II, Complutense University of Madrid, Spain
f Neurology Department, San Carlos University Hospital, Madrid, Spain
gGeriatrics Department, San Carlos University Hospital, Madrid, Spain
hRadiology Department, San Carlos University Hospital, Madrid, Spain
iLaboratory of Psychoneuroendocrinology and Molecular Genetics, Biomedical Research Foundation,
San Carlos University Hospital, Madrid, Spain
jDepartment of Psychiatry, Faculty of Medicine, Complutense University of Madrid, Spain

Accepted 15 January 2016

Abstract. Recent proposals of diagnostic criteria within the healthy aging-Alzheimer’s disease (AD) continuum stressed the
role of biomarker information. More importantly, such information might be critical to predict those mild cognitive impairment
(MCI) patients at a higher risk of conversion to AD. Usually, follow-up studies utilize a reduced number of potential markers
although the conversion phenomenon may be deemed as multifactorial in essence. In addition, not only biological but also
cognitive markers may play an important role. Considering this background, we investigated the role of cognitive reserve,
cognitive performance in neuropsychological testing, hippocampal volumes, APOE genotype, and magnetoencephalography
power sources to predict the conversion to AD in a sample of 33 MCI patients. MCIs were followed up during a 2-year period
and divided into two subgroups according to their outcome: The “stable” MCI group (sMCI, 21 subjects) and the “progressive”
MCI group (pMCI, 12 subjects). Baseline multifactorial information was submitted to a hierarchical logistic regression
analysis to build a predictive model of conversion to AD. Results indicated that the combination of left hippocampal volume,
occipital cortex theta power, and clock drawing copy subtest scores predicted conversion to AD with a 100% of sensitivity
and 94.7% of specificity. According to these results it might be suggested that anatomical, cognitive, and neurophysiological
markers may be considered as “first order” predictors of progression to AD, while APOE or cognitive reserve proxies might
play a more secondary role.
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INTRODUCTION

The recent inclusion of biomarkers as sup-
portive information in the diagnostic criteria for
Alzheimer’s disease (AD) has been considered an
important advance in its characterization [1]. In
addition, biomarkers played a key role in recogniz-
ing AD as a continuum of clinical and biological
phenomena. Thereby, the National Institute on
Aging-Alzheimer’s Disease Association (NIA-AA)
proposed three consecutive phases of the disease:
preclinical, symptomatic pre-dementia or mild cog-
nitive impairment (MCI) and AD dementia [1–3].
The combination of more precise clinical criteria and
biomarkers has been decisive in increasing diagnosis
and prognosis accuracy.

Although the diagnostic accuracy has certainly
increased, the question of which specific MCI sub-
ject will finally develop AD still remains unanswered.
A reasonable explanation for this phenomenon is to
consider that during the course of the disease, patho-
physiological and cognitive changes are not as linear
as they were previously contemplated [4]. Predic-
tive studies have analyzed a number of biological
and cognitive factors, including cognitive reserve [5],
performance in cognitive testing [6], volumetric mag-
netic resonance imaging (MRI) [7–9], apolipoprotein
�4 (APOE4) genotype [10], fluorodeoxyglucose and
Pittsburgh compound B positron emission tomog-
raphy (FGD-PET, PIB-PET) [11, 12], cerebrospinal
fluid (CSF) markers [13–15], etc. Notably, most con-
version studies utilized a single marker to predict
progression to AD, when this phenomenon may be
deemed as multifactorial in essence.

Other possible indicators, such as neurophysi-
ological variables, have not yet been considered
as putative markers of the disease. However,
electroencephalography (EEG) and particularly mag-
netoencephalography (MEG) may provide relevant
information on the progression to AD [16]. For
instance, Jelic et al. [17] reported that the best predic-
tor of future conversion to AD was an increased theta
power and a decrease in alpha activity, while Huang
et al. [18] showed that the best marker was the shift
of alpha activity toward anterior brain areas. Rossini
et al. [19] found that progressive MCI patients exhib-
ited higher power values in delta, theta, and alpha1
bands, mainly over temporal and parietal areas, and
also changes in fronto-parietal midline coherence val-
ues. Fernandez et al. [20] found that an increase in
delta activity in left parietal areas was a good marker
of conversion within 2 years. Thereafter, Moretti

et al. [21] observed that progressive MCIs presented
an increase of alpha3/alpha2 relative power ratio,
being this ratio further related to hippocampal atro-
phy [22]. Poil et al. [23] found that multiple EEG
biomarkers, mainly related to the activity in the beta-
frequency range, may predict the conversion from
MCI to AD. In a recent study performed by our group
[9], progressive MCI subjects showed a higher syn-
chronization in alpha band between the right anterior
cingulate and temporo- occipital regions as compared
with stable MCI subjects.

Due to the inherent complexity of the conver-
sion phenomenon, it might be necessary to consider
a more global perspective. To this end, we pro-
posed a multivariate study where a sample of MCIs
was followed-up during a 2-year period. The study
included cognitive reserve (CR) proxies (i.e., edu-
cational level and occupational attainment), genetic
risk factors (i.e., APOE genotype), cognitive per-
formance, anatomical information (i.e., hippocampal
volumes), and neurophysiological measures (i.e.,
source analysis of relative power by means of MEG).
To the best of our knowledge, such combination of
variables has never been used within this field of
research.

MATERIALS AND METHODS

Participants

Thirty-three MCI patients (17 females) were
recruited from the Geriatry and Neurology Units
at the “Hospital Universitario San Carlos”, Madrid,
Spain. All of them were right-handed [24] and native
Spanish speakers. Demographic and clinical data for
MCI patients are shown in Table 1.

All subjects underwent a clinical evaluation, mag-
netic resonance (MRI), MEG scanning, and a genetic
analysis. In order to evaluate the global cognitive and
functional status, all participants were screened with
a set of standardized tests that included: the Span-
ish version of the Mini-Mental State Examination
(MMSE) [25], the Global Deterioration Scale (GDS)
[26], the Functional assessment questionnaire (FAQ)
[27], the Geriatric Depression Scale- Short Form
(GDS- SF) [28], the Hachinski Ischemic Score [29],
the questionnaire for Instrumental Activities of Daily
Living [30], and the Functional Assessment Staging
(FAST) [31]. In addition, participants underwent an
extensive neuropsychological assessment to explore
their cognitive functioning by using the following
tests: clock drawing test [32], direct and inverse digit
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Table 1
Mean values ± standard deviation of the demographics and more

relevant clinical characteristics of MCI patients (n = 33)

Mean ± SD & Proportions

Age 73.8 ± 6.5
Gender (male/female) 16/17
MMSE 28.3 ± 1.8
Education (years) 8.2 ± 4.7
OCC theta power (2.20 ± 0.7) × 10–2

LH ICV (2.25 ± 0.44) × 10–3

RH ICV (2.20 ± 0.47) × 10–3

APOE 4 (non-carrier/carrier)∗ 19/13

MMSE, Mini-Mental State Examination Score; OCC, occipital
cortex; LH ICV, left hippocampus normalized by total intracranial
volume (ICV); RH ICV, right hippocampus normalized by ICV;
APOE, gene encoding for apolipoprotein E. Non-carrier, there is
not any allele 4, and carrier: there is at least 1 allele 4. ∗The APOE
value from one participant was missing.

spam test (Wechsler Memory Scale III, WMS-III)
[33], immediate and delayed recall (WMS-III) [33],
phonemic and semantic fluency (controlled oral word
association test) [34], ideomotor praxis of Barcelona
test [35], rule shift cards (behavioral assessment of
the dysexecutive syndrome) [36], visual object and
space perception test [37], Boston naming test [38],
and trail-making test (TMT), parts A and B [39].

MCI patients were diagnosed according to the
National Institute on Aging-Alzheimer Association
(NIA-AA) criteria [3], and based on their cogni-
tive profile, all of them were classified as amnestic
MCI patients [40]. Besides meeting the core clinical
criteria for MCI, patients also exhibited significant
hippocampal atrophy according to the evaluation
of an experienced neuroradiologist (M.Y.) who was
blinded to the clinical outcome (see also below
hippocampal volumes calculation). Consequently,
patients were categorized as “MCI due to AD inter-
mediate likelihood” [3]. A 2-year follow-up was
accomplished by assessing patients’ neuropsycho-
logical performance and clinical status every 6
months. MCIs were then split into two groups accord-
ing to their clinical outcome: (1) The “stable” MCI
group (sMCI, 21 subjects: 11 females) was com-
posed of patients who fulfilled the diagnosis criteria
of MCI at the end of follow-up; and (2) The “pro-
gressive” MCI group (pMCI, 12 subjects: 6 females)
was composed of those patients who met the crite-
ria for probable AD [1] during the follow-up period.
Demographics and clinical data for sMCI and pMCI
are shown in Table 2.

All MCI subjects were in good health, with no sig-
nificant medical, psychiatric or neurological diseases

Table 2
Mean values ± standard deviation of the demographics and more
relevant clinical characteristics of sMCI (n = 21) and pMCI (n = 12)

MCI Group Mean ± SD

Age Stable 72.7 ± 6.5
Progressive 75.75 ± 6.2

Gender (males/females) Stable (10/11)
Progressive (6/6)

MMSE Stable 28.48 ± 188
Progressive 27.89 ± 1.8

Education (years) Stable 9 ± 5.5
Progressive 7 ± 2.7

OCC theta power Stable (2.00 ± 0.64) × 10–2

Progressive (2.56 ± 0.82) × 10–2

CDT copy subtest Stable 6.63 ± 0.597
Progressive 5.17 ± 1.467

LH ICV Stable (2.44 ± 4.22) × 10–3

Progressive (1.93 ± 2.82) × 10–3

RH ICV Stable (2.36 ± 4.05) × 10–3

Progressive (1.95 ± 4.82) × 10–3

APOE 4 Stable (12/9)
(non-carrier/carrier) Progressive (7/4)∗

MMSE, Mini-Mental State Examination Score; OCC, occipi-
tal cortex; CDT, Clock Drawing; LH ICV, left hippocampus
normalized by total intracranial volume (ICV); RH ICV, right
hippocampus normalized by ICV; APOE, gene encoding for
apolipoprotein E. Non-carrier, there is not any allele 4, and car-
rier: there is at least 1 allele 4. ∗The APOE value from one pMCI
was missing.

(other than AD or MCI). General inclusion criteria
considered an age between 65 and 85 years, a modi-
fied Hachinski score ≤4, a geriatric depression scale
short-form score ≤5, and a T2- weighted MRI within
12 months before MEG screening without indica-
tion of infection, infarction, or focal lesions (rated
by two independent experienced radiologists) [9, 41].
Finally, those participants with medical treatment
which could affect MEG activity (e.g., cholinesterase
inhibitors) were required to interrupt it 48 h before the
recordings.

The study was approved by the Hospital Univer-
sitario San Carlos ethics committee and all subjects
gave informed consent prior to their MEG recording.

Proxies of cognitive reserve

Two main proxies of cognitive reserve were con-
sidered: Educational level and occupational attain-
ment. Educational level was measured as years of
formal education (range 1 to 20 years), and obtained
by questioning participants or caregivers. Occupa-
tional attainment was classified into five categories,
according to the main professional activity carried
out during the active life of each participant: (1)
housewife/no formal employment, (2) non-qualified,
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(3) qualified; (4) technical/professional; (5) highly
qualified [42], see also [43].

APOE genotype

APOE genotype was extracted from blood samples
of MCIs (both stable and progressive), and deter-
mined using standard methods [44]. According to
the presence or absence of the �4 (APOE4) allele,
participants were classified as APOE4 carriers or
non-carriers (see Table 1).

MRI acquisition and hippocampal volumes

3D T1 scans were collected with a General Electric
1.5 T magnetic resonance scanner, using a high-
resolution antenna and a homogenization PURE
filter [Fast Spoiled Gradient Echo (FSPGR) sequence
with parameters: TR/TE/TI = 11.2/4.2/450 ms; flip
angle 12◦; 1 mm slice thickness, 256 × 256 matrix;
and FOV 25 cm]. T1-weighted MRI images were
then processed with Freesurfer software package
(version 5.1.0) and its specialized tool for automated
cortical and subcortical segmentation [45], in order
to obtain the hippocampal volumes. The automated
Freesurfer technique is well described else-
where (https://surfer.nmr.mgh.harvard.edu/fswiki/
FreeSurferMethodsCitation) and briefly, consists of
an assignation of a neuroanatomical label to each
voxel in an MRI volume based on probabilistic
information estimated from a set of 39 training
segmentations, manually labelled using the Center
for Morphometric Analysis conventions. Resulting
hippocampal volumes were normalized considering
total intracranial volume (ICV) to account for the
variability in head volume along subjects. Accord-
ingly, two variables were created and submitted
for further analysis: LH ICV = Left Hippocampal
volume/ICV; and RH ICV = Right hippocampal
volume/ICV.

MEG recordings and preprocessing

Three minutes of eyes-closed resting state MEG
activity were acquired at 1000 Hz sampling rate
(online bandpass anti-alias filtering at 0.1–330 Hz)
with a 306-channel Vectorview system (ElektaNeuro-
mag). The MEG system was placed in a magnetically
shielded room (VacuumSchmelze GmbH, Hanua,
Germany) at the “Laboratorio UPM-UCM de Neuro-
ciencia Cognitiva y Computacional” (Madrid, Spain).
The head movement was controlled by means of four

head-position indicator (HPI) coils attached to the
scalp. The position of HPI coils and subject’s head-
shape relative to three anatomical locations (nasion
and both preauricular points) were defined using a
3D digitizer (FastrakPolhemus). Ocular movements
were monitored by two bipolar electrodes. Record-
ings were submitted to Maxfilter software (v 2.2,
correlation threshold = 0.9, time window = 10 s) in
order to remove external noise with the temporal
extension of the signal space separation method with
movement compensation [46, 47].

Magnetometers’ resting state data were automati-
cally scanned for ocular, muscle and “jump” artifacts
by means of Fieldtrip software [48], and were con-
firmed by a MEG expert (P.C). Then, artifact-free data
were segmented in continuous 4-s fragments (trials).
Only MEG recordings with at least 15 clean trials
(60 s of brain activity) were kept for further analy-
ses. In order to calculate the source reconstruction,
clean trials were filtered (1.5–45 Hz) with a Finite
Impulse Response filter of order 1000 designed with
a Hamming window. The filter was applied using a
two-pass procedure over the whole five-minute reg-
isters, in order to avoid phase distortion and edge
effects.

Source reconstruction

Headmodels and beamforming
A regular grid of 2455 nodes, with 1 cm spacing,

was created in the template Montreal Neurologi-
cal Institute (MNI) brain. This set of nodes was
transformed to the subject’s space using a linear
normalization between the native T1 image and a
standard T1 in MNI space. The forward model was
solved with the realistic single-shell model intro-
duced by Nolte [49]. Source reconstruction was
performed with a Linearly Constrained Minimum
Variance beamformer [50].

Power spectra analysis

MEG power spectra of each node were computed
for all artifact-free trials with a frequency-of-interest
range of 0.5 Hz steps from 1.5 to 30 Hz by means
of standard Fieltrip’s procedure [48]. Trials were
averaged across subjects, and for each node the rel-
ative power was calculated by normalizing with the
total power over the 1.5–30 Hz range [17]. Finally,
we defined five frequency bands: delta (1.5–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta1 (12–20 Hz),
and beta2 (20–30 Hz).

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation
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Fig. 1. Regions of interest: left inferior parietal lobe (LIPL); right inferior parietal lobe (RIPL); occipital cortex (OCC); left medial temporal
gyrus (LMTG); right medial temporal gyrus (RMTG); retrosplenial cortex (RSC); left hippocampus (LHIP); and right hippocampus (RHIP).

Atlas based analysis

Anatomic labels were assigned to each node
with the Harvard-Oxford probabilistic atlas [51].
We selected 8 regions of interest (ROIs) accord-
ing to previous EEG and MEG AD-related literature
(see Fig. 1) [20, 52–56]. Then, power values were
averaged per ROIs, ending up with an 8 ROIs × 5
bands × 33 subjects matrix.

Statistical analyses

In order to identify those factors related with
outcome, stability, or progression to AD, and to ret-
rospectively assess the predictive capability of each
one of them, we performed an analysis of each set
of factors, separately by blocks that contain infor-
mation of different nature or level of aggregation.
Factors included in the analysis and evaluated at entry
were: 1) Demographic variables (age, gender and
cognitive reserve proxies); 2) APOE genotype; 3)
Neuropsychological testing scores; 4) MEG power
data on each ROI; and 5) Hippocampal volumes. In
each block two-sample t-tests and Chi-square tests
of homogeneity were applied to evaluate group dif-
ferences in quantitative and categorical variables,
respectively. Once the candidate variables of each
block were selected, hierarchical logistic regression
analyses were applied in order to obtain a model
that might allow the discrimination of stable and pro-
gressive MCI patients. The motivation for using the
hierarchical logistic regression model was to con-
trol or take into account the impact of each block
of variables on outcome. As in previous studies of
our group [20, 55], the variable selection paradigm
described in Hosmer et al. [57] has been used in each

block; this includes the use of a stepwise method in
those blocks that contain a large number of signifi-
cant variables. The change in the Block Chi-square
allows evaluating how much predictive power was
added to the model by the addition of another block.
The accuracy of the final fitted model was then assess-
ed by means of R2 statistics such as Cox-Snell and
Nagelkerke statistics as well as using the ROC curve
analysis. Finally, a complementary split-sample vali-
dation analysis, in particular a 75-25 cross-validation
was employed. Thus, the sample containing all cases
was randomly divided into two subsamples, a train-
ing sample containing 75% of the cases and a holdout
sample containing the remaining 25% of the cases.
The final fitted logistic model was refitted to the
training sample, and the holdout sample was clas-
sified using the coefficients based on the training
sample.

Statistical analyses were performed using SPSS 22
statistical package.

RESULTS

Stable versus progressive MCIs analyses

As described in the Methods section, after a two-
year follow-up 12 of 33 MCI (36%) patients met the
criteria for probable AD.

Demographic variables

None of the demographic variables showed statisti-
cally differences between groups: gender (χ2

1 = 0.017,
p = 0.895), occupational attainment (χ2

1 = 1.954,
p = 0.162), years of education (t31 = 1.382, p = 0.178)
and age (t31 = –1.335, p = 0.192) (see Table 2).
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APOE4

The proportion of APOE4 carriers was homo-
geneously distributed in sMCI and pMCI groups
(χ2

1 = 0.126, p = 0.722) (see Table 2).

MEG variables

T-tests showed statistically significant differences
for all ROIs within theta and beta2 frequency ranges
(all p < 0.04). pMCIs showed higher theta and lower
beta2 power values as compared with sMCIs. The
strong correlation among theta values (all r > 0.94)
and among beta2 values (all r > 0.79), as well as the
significant inverse correlation between both sets of
values (all r<–0.69) allows to anticipate a consid-
erable reduction in the number of MEG variables
when multivariate analysis is undertaken. The dif-
ferences were not statistically significant for beta1
(all p > 0.20), alpha (all p > 0.20) and delta bands (all
p > 0.67).

Neuropsychological testing

Among the neuropsychological variables, t-tests
showed that only Clock Drawing (CDT) copy
subtest (p = 0.009), CDT order subtest (p = 0.025),
and Delayed Recall of the WMS-III (p = 0.009)
showed significant differences between sMCIs and
pMCIs. pMCIs exhibited reduced scores in the three
tests. Also, TMT-B Hits (p = 0.052), TMT-B Time
(p = 0.073), and Immediate Recall of the WMS-III
(p = 0.069) showed close-to-significant differences.
Results indicated that MMSE scores were homo-
geneously distributed in sMCI and pMCI groups at
baseline (p = 0.418).

Hippocampal volumes

pMCIs showed significantly reduced LH ICV
(p = 0.001) and RH ICV (p = 0.014) as compared
with sMCIs (see Table 2).

Hierarchical logistic regression analyses

We conducted a hierarchical logistic regression
analysis with the selected variables in each of
three significant blocks, to study potential predic-
tors of conversion to AD. A stepwise procedure was
applied separately by blocks. Only CDT copy sub-
test (p = 0.01), OCC theta (p = 0.05), and LH ICV
(p = 0.009) demonstrated a predictive power in the

multivariate model. The model-building process con-
tinued by ascertaining the correct scale in the logit
for the three variables. The analysis showed evi-
dence of linearity in three cases (all p > 0.4). Finally,
we searched for interactions between these three
variables. No interaction was found (all p > 0.15).
Therefore, the model including CDT copy subtest,
OCC theta, and LH ICV was selected as the best
model for stable versus progressive MCIs discrim-
ination (see Fig. 2).

The Nagelkerke R2 goodness of fit statistic was
0.82, indicating that an 82% of the “variation” in
the diagnosis (stable vs. progressive) was explained
by the logistic model. The Cox-Snell R2 was 0.61.
The estimated sensitivity and specificity of model,
from the classification table, was 100% and 94.7 %,
respectively when a 0.50 cut-off point is adopted (one
misclassified subject). Notably, sensitivity/specificity
percentages remain stable for a cut-off point’s interval
between 0.36 and 0.65, thus indicating the robustness
of the model. Also, results of a 75-25 cross-validation
analysis confirmed the goodness of fit. The accuracy
rate for the training sample was 95.5% while the same
rate for the holdout sample was 100%. Both global
significance test and the corresponding tests for each
of the predictors in the training sample were signif-
icant (p < 0.001 and all p < 0.04 respectively). These
results support the predictive capability of the model
and consequently its usefulness.

The estimated relative risk of conversion to AD
decreases by 84.8% for an increase of 1 point in
CDT copy subtest score. This relative risk of con-
version increases by 62.5% for an increase of 0.01
units in OCC theta. The estimated relative risk of
conversion to AD decreases by 71.5% when the “ratio
of volumes” LH ICV increases 0.0001. Finally, The
AUROC for this model was of 0.97 (95% CI = 0.91;
1.00).

DISCUSSION

During the last two decades, the detection of those
subjects with an increased risk of conversion to AD
became a crucial goal for basic and clinical neuro-
science. In this vein, most studies tried to demonstrate
that a particular marker (i.e., demographic, cogni-
tive, biological, etc.) was sensitive enough to predict
progression to AD. However, relatively few investiga-
tions compared the specific contribution of different
kinds of markers and their conjoint predictive capa-
bility. When such investigations were carried out (see
below) a new perspective emerged, and two key ideas
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Fig. 2. Graph of the mean values of the three variables statistically significant between Stable and Progressive MCI groups: CDT copy
subset, LH ICV, and Occipital theta in Stable and Progressive MCI groups. Error bars indicate Standard errors.

were stated: 1) The combination of markers yields
a radical increase in the predictive capability of the
models; and 2) Several markers, typically associated
with cognitive deterioration, fail to demonstrate a sig-
nificant contribution as predictors of conversion when
they are tested in multivariate models. The latter affir-
mation is of special relevance, since it might suggest
the existence of “first order” and “second order” pre-
dictors of conversion to AD. First order predictors
would be those markers that survive in a systematic
selection process when they are merged with other
markers, since they provide basic and non-redundant
information about MCI outcome. Second order pre-
dictors may be defined as those markers that do not
survive in a systematic selection process since they
provide information that is better addressed by first
order predictors.

Our results support both ideas. Several investiga-
tions proved that APOE4 is a risk factor for late-onset
AD, which is associated with a faster rate of cogni-
tive decline and with a decrease in the age at onset
of dementia [10]. However, APOE4 sensitivity and
specificity are low when the marker is used alone, and
some studies showed no association between APOE4
and progression to dementia [58–60]. Supporting our

results, the meta-analysis carried out by Modrego
[61] indicated that APOE4 is not a strong predictor
of conversion to AD.

Regarding CR proxies, our results indicated that
they made no significant contribution to the pre-
diction of conversion to AD. Undoubtedly, the
interaction between cognitive enrichment and brain
plasticity may produce a reserve against late-life
insults [62]. Nevertheless, the actual influence of CR
proxies on cognition might be biased by the strong
relationship between those proxies and performance
in tests utilized for MCI or AD diagnosis. This prob-
lem was noted by Stern [63], and has been considered
in subsequent studies [43, 64, 65]. Thereby, Amieva et
al. [64] pointed out that recent investigations showed
a positive effect of education on cognitive perfor-
mance but a lack of association with rates of cognitive
decline. A potential explanation could be due to
the difference in premorbid level of performance.
Authors put forward that, as higher-educated sub-
jects achieve higher premorbid levels of cognitive
performance, the delay in reaching dementia thresh-
old would be longer but education per se might have
no particular effect on the rate of decline. Similarly,
Serra et al. [65] found no differences in the percentage
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of conversion to AD between MCI patients with high
and low CR, and posed that such results were in
accordance with Stern’s theory of reserve [62] which
hypothesizes that cognitive enrichment does not pro-
tect against disease progression itself.

Considering this background, it might be affirmed
that APOE4 and CR proxies could be examples of
second order predictors of conversion to AD. On
the contrary, our results strongly suggest the notion
that hippocampal volumetry and MEG source anal-
ysis of low-frequency activity may be examples of
first order predictors. A cognitive marker was also
included in our final predictive model but this fact
deserves further comment. Although very recent
studies stressed the predictive capability of cogni-
tive markers [66], the actual role of these markers
has been questioned. Some authors stated that since
AD and MCI diagnosis are based on the severity of
cognitive dysfunction, the use of neuropsychological
performance as a predictor of conversion is circular
[67]. According to this, Heister and colleagues [67]
claimed that neuropsychological tests might be bet-
ter conceptualized as severity measures rather than
“predictors”. Notwithstanding, very recent studies
that combined demographic, cognitive, and biolog-
ical markers pointed out that some cognitive tests,
specially delayed episodic memory and screening
measures such as the CDT, survive in an exhaustive
process of markers selection [67–69]. Interestingly,
in three of these four studies [67, 69, 70] the com-
bination of mesial temporal atrophy and cognitive
performance were best predictors of progression to
AD, while CR or APOE4 made no contribution.

Findings presented in this work are totally in line
with the above cited investigations. First, our results
indicated that left hippocampal volume is the marker
showing the strongest association with conversion,
thus supporting the overwhelming evidence that left
hippocampal atrophy represents a cornerstone in the
predictive models of progression to AD [71, 72]. Sec-
ond, our findings confirmed that screening tests such
as the CDT, probably less influenced by educational
factors as compared with the MMSE, are also reli-
able severity measures [67, 70, 73]. Our results also
confirmed that when an additional, non-redundant
marker is included (see, for example, Devanant et al.
[68]), the model’s sensitivity increases. In this case
the additional marker was theta power in posterior
(i.e. occipital cortex) brain regions.

This evidence represents a new confirmation of
MEG low-frequency activity as a crucial factor to
estimate the risk of progression to AD. The predictive

value of neurophysiological techniques was high-
lighted in EEG studies [17] but they were limited by
a poor spatial resolution. Previous investigations by
our group using MEG source analysis, demonstrated
that an increased low-frequency activity in posterior
cortex correlated with genetic risk profiles, elevated
the risk of conversion by a factor of 3.5, and was
involved in the transition from healthy aging to MCI,
and from MCI to AD [20, 55, 74, 75]. Specifically,
an increased delta activity on the occipital cortex was
involved in the transition from healthy aging to MCI
[55]. These observations coincide with several EEG/
MEG studies on AD that demonstrated a slowing
of the dominant oscillatory brain activity over pos-
terior brain regions with progression to more anterior
regions during the evolution of the disease [76–79].
According to this process, the dominant alpha activ-
ity over occipital cortex is progressively substituted
by a rhythm within the low-frequency range [79].
Chiaramonti et al. [80] calculated the centroid of
the conventional EEG bands in a group of mild and
moderate AD patients, and reported that such “substi-
tution” process was associated with disease severity
(for more information on the implication of occip-
ital pathology in AD see McKee et al. [81]). Now
we prove that OCC theta power survived in a hier-
archical selection process where multiple markers
were included, suggesting that it provided with infor-
mation that significantly improved the sensitivity of
the model. The final model including LH ICV, CDT
copy subtest and OCC theta power reached 100%
and 94.4% of sensibility and specificity, respectively,
values that may be considered within the top rank
reported in the literature (see [67]).

The results obtained in this study were limited
by the small sample size, especially in the case of
pMCIs. Notwithstanding, it still demonstrated that a
combination of cognitive, structural and neurophysi-
ological markers was predictive of progression to AD
in a MCI population. In addition, our results showed
that other markers such as APOE4 genotype or CR
proxies might play a secondary role. Finally, these
results represent an additional corroboration for the
importance of MEG as a biomarker within the healthy
aging-AD continuum.
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ship to López-Sanz (BES-2013-063772), both from
the Spanish Ministry of Economy and Competitive-
ness.

Authors’ disclosures available online (http://j-alz.
com/manuscript-disclosures/15-1034r2).

REFERENCES

[1] McKhann GM, Knopman DS, Chertkow H, Hyman BT,
Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly
JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Schel-
tens P, Carrillo MC, Thies B, Weintraub S, Phelps CH
(2011) The diagnosis of dementia due to Alzheimer’s dis-
ease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement 7,
263-269.

[2] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S,
Fagan AM, Iwatsubo T, Jack CR, Kaye J, Montine TJ, Park
DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K,
Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV,
Phelps CH (2011) Toward defining the preclinical stages of
Alzheimer’s disease: Recommendations from the National
Institute on Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for Alzheimer’s disease. Alzheimers
Dement 7, 280-292.

[3] Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman
HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen
RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The
diagnosis of mild cognitive impairment due to Alzheimer’s
disease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement 7,
270-279.

[4] Jack CR, Wiste HJ, Knopman DS, Vemuri P, Mielke MM,
Weigand SD, Senjem ML, Gunter JL, Lowe V, Gregg
BE, Pankratz VS, Petersen RC (2014) Rates of �-amyloid
accumulation are independent of hippocampal neurodegen-
eration. Neurology 82, 1605-1612.

[5] Valenzuela MJ, Sachdev P (2006) Brain reserve and demen-
tia: A systematic review. Psychol Med 36, 441-454.

[6] Albert M, Moss M, Blacker D (2007) Longitudinal change
in cognitive performance among individuals with mild cog-
nitive impairment. Neuropsychology 21, 158-169.

[7] Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi
S, Segal S, Rusinek H, Pelton GH, Honig LS, Mayeux R,
Stern Y, Tabert MH, de Leon MJ (2007) Hippocampal and
entorhinal atrophy in mild cognitive impairment: Prediction
of Alzheimer disease. Neurology 68, 828-836.

[8] Clerx L, van Rossum IA, Burns L, Knol DL, Scheltens P,
Verhey F, Aalten P, Lapuerta P, van de Pol L, van Schijndel
R, de Jong R, Barkhof F, Wolz R, Rueckert D, Bocchetta M,
Tsolaki M, Nobili F, Wahlund L-O, Minthon L, Frölich L,
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Cabranes JA (2009) APOE, ACT and CHRNA7 genes in
the conversion from amnestic mild cognitive impairment to
Alzheimer’s disease. Neurobiol Aging 30, 1254-1264.

[61] Modrego PJ (2006) Predictors of conversion to dementia
of probable Alzheimer type in patients with mild cognitive
impairment. Curr Alzheimer Res 3, 161-170.

[62] Stern Y (2009) Cognitive reserve. Neuropsychologia 47,
2015-2028.

[63] Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D,
Mayeux R (1994) Influence of education and occupation
on the incidence of Alzheimer’s disease. JAMA 271, 1004-
1010.

[64] Amieva H, Letenneur L, Dartigues J-F, Rouch-Leroyer I,
Sourgen C, D’Alchée-Birée F, Dib M, Barberger-Gateau P,
Orgogozo J-M, Fabrigoule C (2004) Annual rate and pre-
dictors of conversion to dementia in subjects presenting
mild cognitive impairment criteria defined according to a
population-based study. Dement Geriatr Cogn Disord 18,
87-93.

[65] Serra L, Musicco M, Cercignani M, Torso M, Spanò B,
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