
November 1, 2017 10:52 1750041

International Journal of Neural Systems, Vol. 27, No. 8 (2017) 1750041 (21 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0129065717500411

Network Disruption in the Preclinical Stages of Alzheimer’s Disease:
From Subjective Cognitive Decline to Mild Cognitive Impairment

David López-Sanz
Laboratory of Cognitive and Computational Neuroscience

Center for Biomedical Technology, Complutense University of Madrid
and Technical University of Madrid 28223, Spain

Department of Basic Psychology II
Complutense University of Madrid 28223, Spain

david.lopez@ctb.upm.es

Pilar Garcés∗

Laboratory of Cognitive Computational Neuroscience
Center for Biomedical Technology, Complutense University of Madrid

and Technical University of Madrid 28223, Spain
pilar.garces@ctb.upm.es

Blanca Álvarez
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Introduction: Subjective Cognitive Decline (SCD) is a largely unknown state thought to represent a
preclinical stage of Alzheimer’s Disease (AD) previous to mild cognitive impairment (MCI). However,
the course of network disruption in these stages is scarcely characterized. Methods: We employed
resting state magnetoencephalography in the source space to calculate network smallworldness, clustering,
modularity and transitivity. Nodal measures (clustering and node degree) as well as modular partitions
were compared between groups. Results: The MCI group exhibited decreased smallworldness, clustering
and transitivity and increased modularity in theta and beta bands. SCD showed similar but smaller
changes in clustering and transitivity, while exhibiting alterations in the alpha band in opposite direction
to those showed by MCI for modularity and transitivity. At the node level, MCI disrupted both clustering
and nodal degree while SCD showed minor changes in the latter. Additionally, we observed an increase in
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modular partition variability in both SCD and MCI in theta and beta bands. Conclusion: SCD elders
exhibit a significant network disruption, showing intermediate values between HC and MCI groups in
multiple parameters. These results highlight the relevance of cognitive concerns in the clinical setting
and suggest that network disorganization in AD could start in the preclinical stages before the onset of
cognitive symptoms.

Keywords: Alzheimer’s disease; subjective cognitive decline; mild cognitive impairment; network;
magnetoencephalography.

1. Introduction

Alzheimer’s Disease (AD) is the most common cause
of dementia.1 It is an insidious and neurodegen-
erative disease that produces a progressive decline
in multiple cognitive domains, especially episodic
memory.2 There is a growing interest in the preclini-
cal stages of the disease due to the lack of a curative
treatment3 and the dramatic increase expected in the
number of cases in the future.4

AD is considered as a disconnection syndrome.5

Accordingly, many studies have revealed a progres-
sive loss of functional connectivity (FC) between
key brain regions in AD patients.6,7 For this rea-
son, a network perspective is suitable to characterize
the specific patterns of alterations affecting the con-
nections between different brain regions in the AD
continuum. Given the large amount of data derived
from this kind of analyzes, graph theory has become
a very powerful tool in neuroimaging to summarize
and study the organization of whole brain networks
and capture the alterations in the network structure
caused by the disease.8 Graph theory describes a
network as a set of nodes, the components of a sys-
tem (represented in the brain network perspective as
a region of interest-(ROI)), and a number of edges,
representing the connection between each pair of
nodes.9,10

The brain exhibits a particular organization char-
acterized by a large number of short-range connec-
tions between related areas while maintaining some
long range connections between less related areas.
This small-world topology11 is especially suited for
cognitive processing12 and is the expression of a
trade-off between the pressure to minimize wiring
cost (i.e. reducing long range axons) and maximiz-
ing information flow and integration.13 Alzheimer’s
causes major disruption in network organization,
affecting not only this small-world architecture of
the brain14,15 but also other brain network properties
like clustering or modularity.16

Graph theory can help us unravel the degenera-
tive process occurring during the extended preclin-
ical phase of AD, which could start over 15 years
before the onset of clinical symptoms.17 Mild cog-
nitive impairment (MCI) is a well-known at-risk
stage of AD, characterized by a slight although
detectable cognitive decline in one or more cogni-
tive domains.18 MCI patients exhibit multiple evi-
dences of AD pathology such as cortical atrophy,19 β-
amyloid depositions20 or connectivity disruption.21

This brain pathology translates into network alter-
ations similar to those exhibited by AD patients.22,23

Earlier in the course of the disease, healthy elders
with normal neuropsychological performance could
manifest a subjective feeling of cognitive worsen-
ing. The inclusion of this stage, coined as subjec-
tive cognitive decline (SCD),24 in the preclinical
asymptomatic stage of AD still remains a matter
of debate.25 Although some studies did not find
evidences of AD pathology in the brain of SCD
elders,26,27 there is a growing body of literature
supporting the link between cognitive concerns and
characteristic AD signs such as β-amyloid accumu-
lation,28 reduction of glucose metabolism in AD
related areas29 and relative power decreases in alpha
band30 among others. Furthermore, a meta-analysis
combining data from more than 29,000 subjects has
revealed that healthy elders with SCD are twice as
likely to develop dementia than individuals without
cognitive concerns.31 The conversion rate to AD for
SCD is even greater when segregating healthy elders
with positive β-amyloid into SCD and non-SCD.32

However, very little is known about the beginning of
network disruption in this stage. The only study to
date addressing this issue employed structural net-
works to build graph matrices, reporting no differ-
ences between healthy elders with and without cogni-
tive concerns.33 Although from a theoretical perspec-
tive graph metrics provide a common framework that
allows comparison between networks coming from
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different types of data,23 evidence suggests that dif-
ferences in methodology and relatively small sample
sizes may produce divergent results.16

To the best of our knowledge, this is the first
study to date employing graph metrics built from
functional data to characterize the evolution of net-
work dynamics throughout the preclinical stages
of AD including healthy elders without cogni-
tive concerns (HC), healthy elders with SCD, and
MCI patients. To this aim, we employed resting
state activity recorded with magnetoencephalogra-
phy (MEG) and reconstructed source level activity to
precisely detect and localize changes in brain network
properties and modular organization. Electrophysio-
logical measures of synchrony derived from EEG or
MEG have been proven useful in the detection of
different pathologies34–36 and specifically in AD.37,38

Based on previous imaging studies, we expected to
detect altered network properties in MCI patients
with respect to HC. More importantly, we hypoth-
esized that SCD elders will show alterations in the
same direction of those exhibited by MCI patients,
although to a lower extent, thus exhibiting interme-
diate values between HC and MCI.

2. Methods

2.1. Subjects

The sample for this study was recruited from two
recent projects funded by the Spanish Ministry of
Economy and Competitiveness. In total, 187 elders
were included in this study recruited from three cen-
ters: the neurology department at “Hospital Cĺınico
San Carlos”, the “Center for cognitive impairment
prevention” and the “Seniors center of Chamart́ın
District”, all of them in Madrid, Spain. Partici-
pants were divided into three groups: 63 healthy
elders with neuropsychological performance within
the normal range and no subjective feeling of cog-
nitive decline (HC), 55 healthy elders with unim-
paired cognitive performance but with SCD and 69
elders with Mild Cognitive Impairment (MCI). Sub-
jects were aged between 60 and 81 years old. Table 1
summarizes relevant clinical and demographic data.
The exclusion criteria to enroll in the study included
the following: (1) history of psychiatric or neurolog-
ical disorders or drug consumption that could affect
MEG activity such as cholinesterase inhibitors, (2)
evidence of infection, infarction or focal lesions in

a T2-weighted scan within 2 months before MEG
acquisition (3) a modified Hachinski score equal to 5
or higher, (4) a GDS-SF score equal to 5 or higher,
(5) alcoholism, chronic use of anxiolytics, neurolep-
tics, narcotics, anticonvulsants or sedative hypnotics.
Furthermore, we conducted additional analysis to
rule out other possible causes of cognitive decline
such as B12 vitamin deficit, diabetes mellitus, thy-
roid problems, syphilis, or Human Immunodeficiency
Virus (HIV).

All participants signed an informed consent. This
study was approved by the Cĺınico San Carlos Hos-
pital ethics committee and the procedure was per-
formed in accordance with approved guidelines and
regulations.

2.2. Clinical assessment

An initial screening was carried out to assess the
general functioning and cognitive status of the
sample. This screening included The Mini Men-
tal State Examination (MMSE),39 the Hachinski
Ischemic Score (HIS),40 the Functional Assessment
Questionnaire (FAQ)41 and the Geriatric Depression
Scale — Short Form (GDS-SF).42 Each of the par-
ticipants underwent an extensive neuropsychologi-
cal assessment, whereupon in the following weeks
they completed a magnetic resonance imaging (MRI)
scanner and a MEG scan. The neuropsychological
assessment included: Direct and Inverse Digit Span
Test (Wechsler Memory Scale, WMS-III), Immedi-
ate and Delayed Recall (WMS-III), Phonemic and
Semantic Fluency (Controlled oral Word Associa-
tion Test, COWAT), Ideomotor Praxis of Barcelona
Test, Boston Naming Test (BNT) and Trail Making
Test A and B (TMTa and TMTb) and Rule Shift
Cards (Behavioral Assessment of the Dysexecutive
Syndrome, BADS).

MCI diagnosis was carried out according to the
criteria established by Petersen43 and Grundman.44

In addition, MCI subjects did not fulfill criteria for
dementia diagnosis.

All the participants included into the HC or
SCD group showed a normal cognitive performance
in the neuropsychological tests. Information regard-
ing cognitive concerns was collected during an inter-
view with clinician experts, where subjects self-
reported whether they felt a significant cognitive
decline with respect to their previous performance
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Table 1. The left half of the table shown mean±SD (standard deviation). The right half of the table shown the p-values
resulting of the significant between groups ANOVA comparisons. If the factor is not significant a hyphen is shown. If a
specific post hoc comparison is not significant (α = 0.05) ‘n.s.’ is shown. Education was measured from 1 (illiterate) to 5
(university studies).

Mean ± SD p-values

Control SCD MCI HC-SCD HC-MCI SCD-MCI

Age (years) 70.7 ± 4.5 71 ± 5 71.9 ± 4.2 — — —
Gender (M/F) 24/39 13/42 22/47 — — —

GDS 1.4 ± 1.84 1.8 ± 1.7 3.8 ± 3.2 n.s. 4.5 × 10−8 6.3 × 10−6

Education 4.19 ± 1 3.95 ± 1 3 ± 1.15 n.s. 1.4 × 10−9 2.7 × 10−6

MMSE 28.9 ± 1.2 29 ± 1 26.8 ± 2.4 n.s. 9.7 × 10−10 9.6 × 10−10

Dir. digits 8.5 ± 1.9 8.7 ± 2 7.3 ± 2.2 n.s. 0.004 0.0003

Inv. digits 6.2 ± 1.9 5.6 ± 2 4.3 ± 1.5 n.s. 3.3 × 10−9 0.0002

TMTb hits 23.2 ± 2.6 22.4 ± 3.2 19.4 ± 6.1 n.s. 3.5 × 10−6 5.2 × 10−4

TMTb time (s) 108.7 ± 60.8 133 ± 62 227.6 ± 102.6 n.s. 9.5 × 10−10 1.2 × 10−9

Imm. recall 41.7 ± 11 34.8 ± 11 18.3 ± 7.4 0.0005 9.5 × 10−10 9.5 × 10−10

Del. recall 25.1 ± 8 20.4 ± 8.6 7.5 ± 6.2 0.001 9.5 × 10−10 9.5 × 10−10

Hipp. volume 0.005 ± 5.10−4 0.005 ± 6.10−4 0.004 ± 8.10−4 n.s. 2 × 10−6 2 × 10−5

Note: ODS stands for Geriatric Depression Scale - Short Form. MMSE stands for Mini Mental State Examination, Dir.

digits and inv. digits stand for direct and inverse digit span test respectively. TMTb stands for Trail Making Test form

b. Imm. Recall and del. recall stand for immediate and delayed recall of the WMS-III, respectively. Hipp. Volume stands

for normalized hippocampal volume.

level. The final group assignment was made by multi-
disciplinary consensus (neuropsychologists, psychia-
trists and neurologists). Several possible confounders
of SCD such as: medication, psycho-affective disor-
ders or relevant medical conditions were taken into
account for the decision. According to the SCD Inter-
national Working Group (SCD-I-WG), all the par-
ticipants were older than 60 at onset of SCD, which
occurred within the last five years.24

2.3. MRI acquisition

A T1-weighted MRI was available for each subject,
acquired in a General Electric 1.5 Tesla magnetic res-
onance scanner, using a high-resolution antenna and
a homogenization PURE filter (Fast Spoiled Gradi-
ent Echo sequence, TR/TE/TI = 11.2/4.2/450ms;
flip angle 12◦; 1 mm slice thickness, 256×256 matrix
and FOV 25 cm). MRI images were processed with
Freesurfer software (version 5.1.0) and its specialized
tool for automated cortical and subcortical segmen-
tation45 in order to obtain the volume of both hip-
pocampi. The volume of both hippocampi was aver-
aged and then normalized dividing it by the total
intracranial volume to account for head volume dif-
ferences between subjects.

2.4. MEG recordings and preprocessing

Electrophysiological data were acquired by using a
306 channel (102 magnetometers, 204 planar gra-
diometers) Vectorview MEG system (Elekta AB,
Stockholm, Sweden), placed inside a magnetically
shielded room (VacuumSchmelze GmbH, Hanau,
Germany) at the “Laboratory of Cognitive and
Computational Neuroscience” (Madrid, Spain). All
recordings were obtained while subjects were sitting
comfortably, resting awake with eyes closed. MEG
acquisition consisted of four minutes of signal for
each subject. During the recording continuous infor-
mation of the head position, blinks and eye move-
ments were acquired.

MEG data was registered using a sampling rate
of 1000Hz and an online anti-aliasing bandpass fil-
ter between 0.1Hz and 330Hz. Recordings were pro-
cessed offline using a spatiotemporal signal space sep-
aration algorithm with movement compensation46

(correlation window 0.9, time window 10 s) in order
to remove magnetic noise originated outside the
head.

We employed an automatic procedure from Field-
trip package to detect ocular, muscular and jump
artifacts,47 and the artifact detection was visually
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confirmed by a MEG expert afterwards. The remain-
ing data were segmented in 4 seconds epochs of
artefact-free activity. Additionally, an ICA-based
procedure was employed to remove the electrocardio-
graphic component. Due to the redundancy between
gradiometers and magnetometers after temporal-
signal space separation (tSSS) filtering, only mag-
netometers were used for further analysis.

2.5. Source reconstruction

The source model consisted of 2459 sources placed in
a homogeneous grid of 1 cm in the Montreal Neuro-
logical Institute (MNI) template, then linearly trans-
formed to subject space. The leadfield was calcu-
lated using a three-shell Boundary Element Method
(brain-skull, skull-scalp and scalp-air interfaces gen-
erated from the subject’s T1 MRI) computed with
OpenMEEG software.48

MEG data were band-pass filtered in theta (4–
8Hz), alpha (8–12Hz) and beta (12–30Hz) bands
using an 1800 order finite input response (FIR) fil-
ter designed using Hanning window. Our frequency
band choice was based on previous studies report-
ing greater reliability of graph metrics in these spe-
cific bands.49–51 Data was filtered in a two-pass pro-
cedure as implemented in Matlab’s filtfilt to avoid
phase distortion. 2000 samples of real data at each
side were employed as padding to avoid edge effects.
Linearly Constrained Minimum Variance (LCMV)
beamformer52 was employed to solve the inverse
problem and calculate source time-series.

2.6. Functional connectivity calculation

First, source time series for 52 regions of interest
(ROIs) were extracted using a data-driven functional
atlas created by Craddock et al..53 The original
atlas consisted of 60 ROIs extracted through spa-
tially constrained spectral clustering, generating spa-
tially coherent regions of homogeneous resting state
FC. For our MEG analysis, only cortical ROIs were
employed, resulting in 52 total ROIs. The activity of
each ROI was defined as the time series of the source
within the ROI which showed the highest correlation
with all its neighbors in the ROIs.

For each frequency band, the functional cou-
pling between each pair of ROIs was estimated with
envelope correlation with leakage correction.54,55

First, pairwise ROI time series were orthogonal-
ized through a linear regression between both sig-
nals. The orthogonalization solves the problem of
the artifactual correlations generated by the ill-posed
inverse problem, thus avoiding bias in FC estimates
due to source leakage. Afterwards, the envelopes of
the two orthogonalized time-series were calculated
with the modulus of the Hilbert transform of the
ROI time series, already band-pass filtered in the
specific frequency band. The FC between any two
ROIs was estimated as the Pearson correlation coef-
ficient between their envelopes. Since the orthogo-
nalization of the time series is nonsymmetrical, the
final FC estimate between two ROIs was defined
as the average of the envelope correlation values
obtained when using both ROI time series as seeds
separately.56

2.7. Graph calculations

In general, a graph (G) is expressed as a set of nodes
(V ) and the connections between those nodes, or
edges (E); G = (V, E). The connections between
nodes are stored in a weight matrix (W ). In this
matrix, the weight (w) of the connection between the
node i and the node j is captured by the element wij

of the graph. When constructing weighted networks
in neuroimaging, weak connections represent a major
limitation in graph analysis because they may intro-
duce spurious correlations into the matrix, adding
noise into the network.23 Consequently, we employed
a binarized version of the original connection matrix
of each subject using an arbitrary threshold (τ). Any
connection with a value below the selected threshold
was set to zero, those values higher than the thresh-
old were set to one. wij < τ = 0; wij ≥ τ = 1. AD
and MCI patients are known to exhibit lower FC
values.57–59 As a consequence, their binarized matri-
ces when employing a given FC threshold could be
sparser than those of HC, which is known to signifi-
cantly affect graph metrics.14 In fact, MCI patients
showed a decreased matrix density in the beta band
(and both SCD and MCI showed a trend towards
sparser networks in the theta band) when using a
given FC value to threshold all the matrices. To avoid
this effect we selected a critical value for each indi-
vidual FC matrix such that the proportion of edges
overpassing this threshold was set to a fixed percent-
age, or matrix density. Choosing a specific threshold
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involves an arbitrary decision, therefore, according
to Rubinov and Sporns9 it is considered good prac-
tice to explore changes in network topology across a
wide range of matrix densities to ensure robustness
of results. We set our threshold range from 5% to
35% of matrix edges to ensure quality and complete-
ness of the data.60 Similar ranges have been com-
monly employed in the literature according to Bas-
sett and Bullmore.12 To enable comparison between
groups, we created a surrogate distribution of net-
work parameters for each frequency band and sub-
ject and normalized all value parameters by subtract-
ing the mean surrogate value and dividing it by the
surrogate standard deviation. Networks constructed
using correlation show higher clustering values than
random networks given the transitive nature of corre-
lation. Thus, it is important to use random networks
that preserve these features characteristic of corre-
lational networks. We employed the Hirschberger-
Qi-Steuer (HQS) algorithm,61 implemented for FC
matrices in Ref. 62, which maintains the mean and
variance of the off-diagonal elements and the mean
of the diagonal elements of the FC matrix.

2.8. Network parameters

All network and nodal parameters were calculated
using a freely available toolbox for Matlab: Brain
Connectivity Toolbox.9

2.8.1. Small-world (S)

Brain networks are thought to reconcile a large
amount of short range connections for segregation
while maintaining a sufficient amount of long range
connections to ensure processing integration. The
small-world parameter of a binarized network is
defined as the ratio between normalized clustering
coefficient (Cglob) and normalized path length (L)
with respect to a null model network.63 And thus
represents the ratio between the amount of short
range connectivity (or segregation) and the distance
between any two nodes, i.e. network integration. The
random networks for small-world calculation were
generated using HQS algorithm, given the tendency
of correlational networks to overestimate smallworld-
ness if an inappropriate null model is employed.

S =
Cglob/Crand

L/Lrand
. (1)

2.8.2. Global clustering coefficient (Cglob)

Clustering coefficient is a measure of local connectiv-
ity representing the fraction of triangles surrounding
a node. It was implemented in BCT as defined in
Ref. 11. That is to say, the algorithm calculates how
many of the nodes to which a node is connected, are
also connected between them. Cglob is defined as the
mean clustering of all nodes. The mean clustering
coefficient is then normalized individually for each
node, thus being possibly biased by the presence of
nodes with a low degree. This is the clustering defi-
nition employed:

Ci =
2Ei

ki(ki − 1)
, (2)

where Ci is the clustering of each node which is aver-
aged afterwards to obtain Cglob, Ei is the number of
edges between the neighbors of i and ki is the degree
of node i, i.e. the number of neighbors the node has.

2.8.3. Transitivity (T )

Transitivity, similarly to clustering, reflects how well
a node is connected to its neighboring areas. How-
ever, unlike clustering coefficient, transitivity is quite
robust against the presence of barely connected
nodes. Instead of being normalized individually for
each node, transitivity is normalized by the value of
the whole network,64 thus being more resistant to
the presence of nodes with low degree. Transitivity
was calculated following the definition in Ref. 65;

T =
3 · number of triangles

number of paths of length 2′
, (3)

where a triangle is a set of three nodes in which each
is linked by an edge with the other two.

2.8.4. Modularity (Q)

The optimal modular partition is a subdivision of the
network that is able to maximize the ratio between
intra-module edges versus inter-module edges.66 Q

parameter is a statistic representing how well the
partition of the current network fits that definition.
We calculated modularity as the average Q through
100 runs considering that the value on each run
may slightly vary due to heuristics in the algorithm.
Q value was calculated according to Newman’s
formula66 by subtracting the expected number of
edges in a given community from the actual number

1750041-6

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

17
.2

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
12

/1
8/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 1, 2017 10:52 1750041

Network Disruption from SCD to AD

of such edges. In a particular division of a network
larger Q values indicate stronger community struc-
ture.

2.9. Nodal parameters

To best localize and define topological changes in the
network we studied the alterations shown by MCI
and SCD at the nodal level in three key parameters.
For the sake of brevity, all the results at the nodal
level correspond to an intermediate matrix density.
(i.e. 15%), although several other thresholds were
inspected to ensure the consistency of the results
across different matrix densities.

2.9.1. Local clustering coefficient (Cloc)

To further characterize differences in local connect-
edness in both groups we studied variations in clus-
tering patterns across all 52 ROIs between groups
with the above-mentioned clustering definition. How-
ever, instead of averaging the clustering coefficients
across our 52 nodes, we inspected the clustering for
each node separately.

2.9.2. Degree (D)

The degree is a measure reflecting the importance of
a node in a network. It is calculated by counting the
number of suprathreshold links in which a node is
involved after binarization of the correlation matrix,
that is to say, the number of neighbors a node has
after thresholding.

2.9.3. Modular structure

Differences in modular structure were studied com-
paring partition assignments at the nodal level
between groups. To this aim we calculated for each
subject 1000 partitions and then selected the most
representative subdivision of the network for each
subject.67 After that, we employed the same proce-
dure to choose the most representative partition for
each group from the partitions of their members. In
each step, we first calculated an agreement matrix
with the n initial partitions (n = 1000 for each sub-
ject in the first step, and n = number of subjects
in each group in the second step). This matrix con-
tained the probability for each two nodes of the net-
work of being included in the same module. After
that, we employed the algorithm as described in

Ref. 67 to find a consensus partition of the agree-
ment matrix. This algorithm partitions the agree-
ment matrix a number of times to then extract a
single representative agreement partition.

2.10. Statistics

We used ANCOVA with age as covariate to test
group differences in all the network parameters (α =
0.05). Besides, considering that MCI patients had a
lower educational level, we repeated all the analy-
ses with education as a covariate and ensured that
our results were not driven by this variable as all
the effects reported remained unchanged. In the case
of nodal degree and clustering, p-values were cor-
rected using False Discovery Rate for each specific
comparison68 (Q = 0.2). To test differences in mod-
ular distribution at the node level, we calculated dif-
ferences between each pair of partitions by means of
their distance as an information theoretic measure
as implemented in Ref. 69. This procedure quanti-
fies the normalized variation of information between
partitions applying the equation:

VI n =
H(x) + H(Y ) − 2 · MI (X, Y )

log(n)
, (4)

where H is the entropy of each partition, MI is
mutual information and n is the number of nodes.
X and Y correspond to each of the modular par-
titions compared. Intra-group and inter-group dis-
tances were compared to test for differences in mod-
ular structure between groups. Afterwards, we com-
pared the intra-group variability of the individual
partitions across groups with a Wilkoxon test.

We conducted correlation analyses using Pear-
son coefficient in our whole sample between our net-
work parameters: (small-world, clustering, transitiv-
ity, modularity and individual partition distance to
their group’s standard partition) and a subset of neu-
ropsychological tests, one belonging to each of the
cognitive domains mainly affected in early AD: mem-
ory with the “immediate recall test” from the Wech-
sler Memory Scale, and executive functions with the
TMTb time. We also included MMSE as an indi-
cator of overall cognitive status. With this analysis
we aimed to study the relationship between network
disruption and cognitive status. P -values for the cor-
relations were also FDR corrected.
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3. Results

3.1. Network results

3.1.1. Small-world (S)

Regarding small-world (Fig. 1), all three groups
exhibited small-world like brain network topolo-
gies with values over 1 for all matrix densities.
MCI patients showed a decrease in most of the
thresholds with respect to HC in the theta (p-
range = 0.0001–0.044) and beta band (p-range =
0.00001–0.037). MCI also exhibited a decrease in S
compared to SCD in theta (p-range 0.02–0.045) and
beta bands (p-range = 0.01–0.047). However, differ-
ences between MCI and SCD were significant for a
fewer number of thresholds. There were no signifi-
cant differences in small-world topology between HC
and SCD groups.

3.1.2. Clustering (Cglob)

MCI and SCD elders exhibited a decrease in global
network clustering in theta and beta bands with
respect to HC. SCD clustering values were inter-
mediate between HC and MCI (Fig. 1). More
concretely, network clustering in MCI patients
was decreased compared to HC in the theta (p-
range = 0.0004–0.037) and beta band (p-range =
0.00003–0.049). There were no differences in clus-
tering coefficient between MCI and SCD in theta
or alpha band. Significant differences between these
two groups were found only for two matrix densities
in the beta band (p-range = 0.027–0.036). However
given that these results are very sparse across thresh-
olds they should be cautiously interpreted, as they
could reflect an arbitrary effect due to the specific
thresholding value. Similarly to MCI, SCD elders
showed a decrease in the clustering coefficient with
respect to HC in theta (p-range 0.018–0.04) and beta
bands (p-range 0.015–0.045). However, these differ-
ences were evident in a smaller number of thresholds
in both frequency bands.

3.1.3. Modularity (Q)

MCI patients exhibited increases in modularity in
theta band when compared to HC (p-range =
0.001–0.049) and SCD (p-range = 0.022–0.041),
although the latter comparison involved only three
significant matrix densities. In this case differences

between MCI and SCD should be carefully inter-
preted given that SCD showed intermediate mod-
ularity values between HC and MCI in this matrix
density range (Fig. 1). In the alpha band SCD net-
work modularity was decreased compared to both
HC (p-range = 0.022–0.048) and MCI (p-range =
0.022–0.048). Regarding beta band, an increase in
modularity was observed in MCI patients with
respect to HC (p-range = 0.009–0.044) and SCD (p-
range = 0.015–0.037).

3.1.4. Transitivity (T )

In the theta band, we observed a progressive decrease
in transitivity from HC to SCD and then MCI
(Fig. 1). Concretely, SCD transitivity value was sig-
nificantly lower compared to HC in a few thresholds
(p-range = 0.042–0.048), but still higher than MCI
for every matrix density (p-range = 0.013–0.045). It
is important to take into account that even though
SCD transitivity in this frequency band showed an
intermediate decrease between HC and MCI, the sta-
tistical significance was not robust across thresh-
olds, so this result should be carefully interpreted.
MCI transitivity was also decreased with respect to
the HC group (p-range = 8 · 10−6–0.0001). Net-
work transitivity was increased in SCD elders in
the alpha band with respect to both HC group (p-
range = 0.016–0.048) and MCI patients (p-range =
0.0009–0.005). Regarding beta band, MCI patients
exhibited a decrease in transitivity with respect to
SCD (p-range = 0.005–0.044), and a more consis-
tent decrease across thresholds when compared to
HC group (p-range = 0.0004–0.03).

3.2. Node results

3.2.1. Local clustering changes

As shown in Fig. 2, we observed alterations in
clustering coefficient in the MCI group when com-
pared to HC at the node level. In the theta band,
these alterations involved clustering decreases spe-
cially located in posterior areas and lateral areas
such as left middle temporal lobe, both inferior pari-
etal lobes, and right superior occipital regions. Two
frontal nodes also exhibited a decrease in clustering
in this frequency band in MCI patients. Regarding
beta band, we observed a posterior decrease in nodal
clustering in MCI patients affecting inferior and mid-
dle temporal lobe and right lingual gyrus. However,
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Network Disruption from SCD to AD

Fig. 1. Mean network parameters for each diagnostic group as a function of matrix density (k). Shaded areas represent
mean standard error. If the difference between two groups for a given matrix density is significant (α = 0.05), an asterisk
with the specific color code of that comparison is shown in the upper part of each graph. Each row shows the results for a
different network parameter: small-world, clustering, modularity and transitivity, respectively. Each column corresponds
to a specific frequency band: theta, alfa and beta band, respectively.
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Fig. 2. (Color online) Figure displays significant nodal
clustering differences between groups. Blue spheres indi-
cate a decrease in the specific node in MCI group. Red
spheres indicate an increase in the specific node in MCI
group.

we found an increase in clustering coefficient in the
frontal lobe in both; right superior medial and left
middle frontal lobe. Interestingly, SCD clustering
levels seem to be in an intermediate state between
HC and MCI as we found no differences between HC
and SCD nor between SCD and MCI.

3.2.2. Local degree changes

Our results showed alterations in nodal degree both
in SCD and MCI, although the latter showed dis-
ruptions over much broader regions (Fig. 3). With
respect to the HC group, MCI patients exhib-
ited a clearly divided dual pattern of posterior
degree decreases and anterior increases in theta and
beta band. Posterior nodes affected by this degree
decrease involved bilateral occipital, middle tem-
poral lobe and parietal areas including two nodes
located in the left precuneus. Regions with increased
nodal degree included bilateral middle and superior
frontal gyrus, left hippocampus, anterior cingulate
cortex and the insula among others. SCD elders also
exhibited a nodal degree increase in left postcentral
node with respect to HC in the beta band

The comparison between SCD and MCI revealed
similar results in the theta band, where MCI patients
demonstrated lower degree values over posterior
brain regions and degree increases in anterior nodes
of the network. Similar regions were affected in the
theta band in both comparisons (HC versus MCI and
SCD verus MCI) although a smaller number of nodes
showed degree abnormalities in the latter. Further-
more, in the alpha band one node located in the left
superior occipital lobe showed a significant decrease
in degree in the MCI group with respect to SCD.
Interestingly, no differences were found between SCD

Fig. 3. (Color online) Figure displays significant nodal
degree differences between groups. Blue spheres indicate
a degree decrease in the group in a more advanced stage
of the disease (i.e. MCI < HC, SCD < HC and MCI <
SCD respectively). On the contrary, red spheres indicate
degree increases in this group (i.e. MCI > HC, SCD >
HC and MCI > SCD, respectively).

and MCI in the beta band, in which MCI exhibited
larger alterations with respect to the HC group.

3.2.3. Modular distribution

We did not observe significant modular distribu-
tion changes between groups in any of the contrasts
(α = 0.05). That is to say, between-groups partitions
distance was not significantly larger than the intra-
group partitions distance. Given that we did not
observe significant modular changes between groups
only HC module partitions are shown in Fig. 4.

To further investigate modular distribution prop-
erties in each group, we studied in more detail the
intra-group variability, comparing within-group par-
tition distances across diagnostics i.e. the distance
between modular partitions of each possible pair of
participants in each group. Interestingly, we observed
a highly significant linear increase in the intra-group
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Fig. 4. (Color online) Figure displays modular parti-
tions for HC group in in theta, alpha and beta band,
respectively. The color of each sphere indicates that node
belongs to a specific brain module.

Fig. 5. Figure displays the mean distance between mod-
ule distributions of each pair of participants in each group
in theta, alpha and beta bands (left to right, respec-
tively) and the standard error of the mean for each bar.
Notes: ∗ stands for p < 0.05. ∗∗ stands for p < 0.001.

modular variability with advancing pathology in the
theta and beta band (Fig. 5). Specifically, in the
theta band MCI patients showed more variability
than HC (p < 0.001) and SCD (p < 0.001). Further-
more, SCD modular partitions variability between
subjects was also larger compared to HC (p < 0.001).
Similarly, in the beta band, MCI showed the largest
between subjects distances, with respect to both HC
(p < 0.001) and SCD (p < 0.001). SCD variability
was also larger compared to HC (p = 0.014). Lastly,
MCI patients also presented larger intra-group dis-
tances in the alpha band than SCD (p < 0.001) and
HC (p < 0.001). On the contrary, we did not observe
a linear increase in this specific frequency range as

SCD elders demonstrated lower between-subject dis-
tances than the HC group (p < 0.001).

3.3. Hippocampal volume

We compared hippocampal volume extracted from
the MRI T1 images in our sample. We used an
ANCOVA with diagnostic as the main factor and age
as covariate. A significant main effect was found for
diagnosis (p < 10−6). Post hoc comparisons revealed
that MCI normalized hippocampal volume was sig-
nificantly smaller compared to both HC (p < 10−5)
and SCD (p < 10−4). Interestingly HC and SCD did
not show any differences in their hippocampal vol-
ume (α = 0.05).

3.4. Correlations

To help interpret the meaning of the disruptions
found in SCD and MCI groups, we conducted a
series of correlations in our sample. The complete
set of significant correlations after FDR correction is
listed in Table 2. Regarding network parameters, we
observed that in the theta, and beta bands, the dis-
ruptions observed in SCD and MCI correlated with
a worst cognitive state. More specifically, decreases
in theta or beta band in small-world or transitiv-
ity, and increases in modularity were associated with
a poorer performance in neuropsychological assess-
ment. Additionally, in the alpha band, a decrease in
modularity and an increase in transitivity were asso-
ciated to a higher MMSE score. No significant cor-
relations were found between cognitive performance
and clustering coefficient.

Lastly, in order to better characterize the changes
demonstrated by SCD and MCI in the intra-group
variability of their modular distributions, we con-
ducted a series of correlations. For each subject, we
obtained the distance between his own modular par-
tition, and the representative partition of his group.
Afterwards, we correlated that distances with neu-
ropsychological tests. In the beta band, we observed
that the more different a subject’s modular distri-
bution was from his group, the worst his perfor-
mance was in memory, executive functions and his
general cognitive state. In the alpha band, where
SCD showed a decrease in intra-group variability,
we observed a similar pattern; those subjects with
similar partitions to its group were able to complete
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Table 2. Significant correlations and their p-value after FDR correction between cognitive tests and network
parameters for each frequency band.

THETA BAND ALPHA BAND BETA BAND

Network Cognition rho p-value rho p-value rho p-value

Small-World Imm. recall — — — — 0.2 0.005
TMTb time — — — — −0.19 0.01

Modularity MMSE — — −0.16 0.03 — —
Imm. recall — — — — −0.22 0.003

Transitivity MMSE 0.19 0.009 0.14 0.04 — —

Imm. recall 0.2 0.007 — — 0.31 2 × 10−5

TMTb time −0.17 0.03 — — −0.2 0.009
Partition deviation MMSE — — — — −0.15 0.03

Imm. recall — — — — −0.25 5.5 × 10−4

TMTb — — 0.18 0.01 0.23 0.002

TMTb faster than those with more different modular
distribution.

4. Discussion

In the present work, we found several alterations in
the network organization of MCI and SCD elders.
Elders with MCI exhibited decreased small-world,
clustering and transitivity and increased modularity.
Furthermore, we observed disruptions in the degree
distribution of their nodes and in their nodal clus-
tering. Lastly, the variability of their modular distri-
butions was significantly increased, thus exhibiting
great disparity between subject’s partitions. How-
ever, the most striking and novel finding is the pres-
ence of alterations in several network parameters in
healthy elders with SCD, such as clustering, transi-
tivity, modularity and the changes observed in intra-
group partitions’ heterogeneity. More importantly,
despite the fact that these disruptions were less pro-
nounced in SCD, the majority of these changes were
in line with those found in MCI. SCD showed inter-
mediate values between HC and MCI groups in mul-
tiple network parameters. This is the first study
reporting network disruption in SCD elders. To the
best of our knowledge, the only study to date study-
ing network topology in SCD reported preserved
white matter organization in SCD.33 Interestingly,
in their study SCD elders also exhibited intermedi-
ate network parameter values between HC and MCI.
The larger sample size of our study probably allowed
us to detect significant differences accounting for the
discrepancies in the results. Our findings support the
notion of SCD as an asymptomatic at-risk state of

AD, suggesting an AD-continuum starting several
years before clinical manifestations appearance in the
MCI stage.

At the network level, we observed several alter-
ations in the different parameters estimated in both
MCI, and SCD. Interestingly, most of these disrup-
tions were found only for the theta and beta bands,
and not in the alpha range, which is the predomi-
nant resting state rhythm. This could suggest that
network structure in the alpha band is relatively pre-
served until later in the course of the disease.

A loss of small-world like architecture has been
traditionally associated with AD70,71 and it has also
been documented in MCI patients.22 In our data,
the reduction observed in small-world affected only
MCI group in theta and beta bands. This decrease
in small-world is thought to impair normal brain
organization. Furthermore, MCI networks are known
to be less efficient and slower in information flow,72

which is consistent with a decrease in smallworldness.
Smallworld-like networks combine a high number of
short range connections at a low cost, with some long
range connections maintaining an efficient informa-
tion flow between distant brain regions.73 This spe-
cific network disorganization present in AD has been
related with alterations in regions with a critical role
for information flow, the so-called hubs,15 which are
known to be affected in the early stages of the dis-
ease.16 However, small-world architecture seems to
be preserved in the SCD stage.

Clustering and transitivity parameters reflect
how well the different regions of the brain are con-
nected into their own local cluster. Even though
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studies reporting transitivity are yet scarce, previous
results suggest that it is a superior method to study
AD-like networks.22 As a consequence, we calculated
both parameters to ensure similar results and com-
pare with the previous literature, which mainly used
clustering coefficient in AD. Overall, we observed
decreases in local connectedness in MCI and SCD,
especially affecting theta and beta bands. There are
no previous studies reporting decreased clustering
coefficient in SCD. However, a reduction in network
clustering has been reported with different meth-
ods such as functional magnetic resonance imag-
ing (fMRI) in AD16,74 or cortical thickness and vol-
ume with MRI in MCI patients22 who also exhib-
ited transitivity reductions in this study. MCI and
AD patients also showed clustering reductions in a
previous study using sparse inverse covariance esti-
mation with positron emission tomography (PET)75

which seems to be an optimal and reliable method-
ology for studying AD.76 Thus, our results for SCD
and MCI are consistent with the previous literature.
The increase in transitivity in the alpha band showed
by SCD elders reflects an increase in the number
of short-range connections in this specific frequency
range. Interestingly, we observed that those sub-
jects with higher transitivity values in the alpha
band demonstrated an overall better cognitive sta-
tus. Although still tentative, this result could suggest
a compensatory mechanism underpinning the normal
cognitive performance of SCD elders in spite of their
abnormal clustering in other frequency bands.

Regarding modularity, we again observed a sim-
ilar pattern in theta and beta bands. MCI patients
exhibited increased modularity in those bands with
respect to both HC and SCD. Modularity is thought
to represent the functional organization of the brain,
and its value is large when the nodes of each mod-
ule are strongly connected to their relatives and
weakly connected to other modules. Our results are
consistent with the previous studies reporting an
increase in modularity in MCI and AD patients22

and also in Parkinson’s Disease patients with MCI
at risk of developing dementia.77 However, there are
also inconsistent results, and some studies reported
decreased modularity in AD.16 Our finding points
to a worse communication between different func-
tional modules, thus decreasing the ability of the
different network components to share information
and work together. This inefficient communication

between brain modules has been previously linked
with worse cognitive performance in AD patients.78

Interestingly, in our results-higher modularity scores
in the beta band were related to worse memory
performance in immediate recall, and in the previ-
ous studies, they were also associated with memory
and visuospatial ability impairment.77 These find-
ings highlight the pathological nature of modularity
alterations. In the alpha band, SCD elders were the
only group showing alterations, a significant reduc-
tion in modularity. Lower modularity in the alpha
band was associated with a more preserved cog-
nitive state, suggesting again a possible compen-
satory mechanism. Furthermore, a previous study
found that increases in task demand were associated
with reductions in the modularization of brain net-
works.79 This effect was interpreted as an attempt
to increase long-distance synchronization between
different functional systems to overcome cognitive
demands. In fact, those subjects with lower modu-
larity values performed faster. These findings seem
to support the compensatory interpretation of the
alpha band results in SCD elders.

After studying network disruption in the pre-
clinical stages of AD we aimed to localize changes
within the brain. We first compared the degree dis-
tribution across brain regions between the three
different groups. AD is known to affect the hub-
like behavior of crucial nodes of the network,16 but
very little is known about the preclinical asymp-
tomatic stage of the disease. In our analysis, MCI
patients exhibited nodal degree decreases over crit-
ical areas of the posterior default mode network
(DMN) such as precuneus, parietal and middle tem-
poral structures in the theta and beta bands when
compared to HC. AD is a disconnection syndrome
known to reduce functional connectivity over poste-
rior brain regions.7,80 Interestingly, this connectivity
alterations in the brain match with the spatiotem-
poral distribution pattern of Alzheimer’s pathophys-
iology.6 In addition, we observed increases in node
degree over anterior regions including frontal areas,
temporal structures and a central hub of the anterior
DMN; the anterior cingulate cortex. These findings
reinforce previous work reporting disrupted nodal
strength in posterior and temporal regions of the
brain, and increases over anterior areas,81–83 and
expand them to the preclinical stages of the disease.
Besides, these results are compatible with previous
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work from our group reporting a dual pattern change
in the FC profile of both MCI and SCD showing
anterior hypersynchronization and FC reduction over
similar posterior brain regions.84 Interestingly, we
did not find in the present work such a pattern in the
nodal degree of SCD group, which could indicate that
even though significant synchronization alterations
are already present in this group, degree distribu-
tion seems to be still relatively preserved compared
to MCI patients. Furthermore, SCD group exhibited
increased nodal strength in a postcentral node in the
theta band. Using graph theory approaches, degree
increases of certain nodes have also been associated
with a greater node vulnerability in different con-
texts such as World Wide Web, metabolic or social
networks.85 Interestingly, SCD group did not show
any significant difference in the beta band when com-
pared either to HC or MCI, thus showing intermedi-
ate values between both states.

Regarding nodal clustering changes, it is worth
noting that the only differences were found between
HC and MCI. SCD local clustering was different nei-
ther from HC nor from MCI group. This raises the
idea that SCD is situated in a somewhat interme-
diate state between both conditions hindering the
identification of significant differences. MCI elders
exhibited widespread clustering decreases indicative
of local disconnection in those nodes. This is con-
sistent with previous works in MCI’s structural net-
works.22 Furthermore, in the beta band, we found
both clustering decreases located in posterior regions
and nodes exhibiting increased clustering coefficient
over frontal areas. This shift in local connected-
ness from posterior to anterior areas has been found
mostly for high frequency bands, which could explain
the different pattern obtained for theta and beta
bands.82

Regarding functional networks organization, we
lastly compared the different modular partitions of
the three diagnostic groups. Modular structure of the
brain has been repeatedly associated with cognitive
performance,78,79,86 thus becoming a relevant net-
work feature to characterize the preclinical stages of
AD. We did not observe a consistent reorganization
in preclinical AD networks. However, we observed
(specifically for theta and beta bands) an increas-
ing variability between subjects’ modular partitions
with advancing pathology, thus, in average, differ-
ences between each pair of modular partitions of

SCD or MCI patients were larger than in the HC
group. These findings could point towards patholog-
ical modular structure disorganization. It is worth
noting that in all three bands, those subjects whose
modular partition were farther from their represen-
tative group partition, performed worse in memory,
executive functioning and overall cognitive state as
measured by MMSE. Although modular reorganiza-
tion in AD has been reported previously,22,78 small
sample sizes and the use of merely descriptive meth-
ods (rather than statistical comparison) may explain
divergent results. Particularly, taking into account
the apparent increased variability in AD network
organization, sample size seems to be a crucial factor
to make modular comparisons robust and reliable.

We also included a brief analysis of gray mat-
ter integrity in a key structure in AD progression,
the hippocampus. As expected, according to multiple
previous studies,19,87 MCI patients showed signs of
atrophy over medial temporal regions. However, it is
of note that we did not observe any sign of hippocam-
pal atrophy in the SCD group as they showed almost
identical levels of hippocampal volume compared to
HC. The results to this regard are quite inconsistent
in the literature, while some studies found a signif-
icant deterioration in this region,88 others reported
no signs of gray matter loss.89 While hippocampal
volume represents a useful tool in the later stages
of the disease, as it has proven to correctly classify
MCI and AD patients,90 it is relevant to highlight
that according to our results, MEG is able to cap-
ture subtle alterations in network organization even
before standard MRI volumetric analysis is able to
detect them as reflected in our results.

This study reinforces the idea of SCD as a pre-
clinical asymptomatic stage of AD. While still pre-
serving some intact network features, SCD elders
evidenced disruptions at the network level compati-
ble with those exhibited by MCI patients, although
to a lower extent. Interestingly, SCD group showed
changes in transitivity and modularity in the alpha
band in opposite direction to those exhibited by
MCI patients, which could be interpreted as a com-
pensatory mechanism. These findings are in line
with previous studies reporting intermediate but
detectable pathological levels in healthy elders pre-
senting cognitive concerns in different modalities
such as MEG power spectra,30 gray matter atro-
phy91,92 or β-amyloid accumulation in AD-related
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areas.93,94 Furthermore, previous studies found that
β-amyloid accumulation could reach a plateau before
the onset of AD.95 Consequently, it is a likely hypoth-
esis that those SCD elders that will eventually
develop AD show some accumulation at this stage
already, thus disrupting to some extent their net-
work behavior. More research is needed to expand
and replicate the knowledge of this preclinical stage.
However, these results highlight the relevance of
cognitive concerns in the clinical setting and point
towards a continuum in the prodromic stages of the
disease from healthy control to MCI or AD through
the SCD stage.

4.1. Limitations and future directions

This study has two main limitations. On the one
hand, some of the network differences reported
should be cautiously interpreted as mentioned
before, namely, differences between SCD and MCI
in beta band clustering or theta band modularity,
or those in theta band transitivity between HC and
SCD are restricted to only a few thresholds, thus lim-
iting the robustness of those results. This problem is
inherently related with the second major limitation
of this study, the fact that SCD is a quite heteroge-
neous entity, thus increasing the variability of our
results. Even though there are multiple evidences
reporting SCD elders are at an increased risk for
developing AD and MCI24,31 and show increased lev-
els of AD pathology,92,96 the present study is cross-
sectional and the exact fraction of the SCD cohort
that will go on to develop AD is unknown. Our cur-
rent definitions and limited understanding of SCD
hamper our ability to discriminate those individuals
with AD pathology from those that will not develop
the disease. Future next steps should involve Com-
puter Aided Diagnosis (CAD) in the SCD stage. Pre-
vious work has used CAD on AD and MCI with
either MRI,97–99 or MEG100,101 successfully classi-
fying and diagnosing at an individual level, for a
review, see Ref. 102. However, its use applied to ear-
lier stages is very limited nowadays. A refinement in
SCD selection criteria is needed to allow employing
such procedures to study the evolution of this at risk
of AD population.
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Drug polyconsumption is associated with increased

synchronization of brain electrical activity at rest
and in a counting task, Int. J. Neural Syst. 24 (2014)
1450005, doi:10.1142/S0129065714500051.

35. A. Correas, S. Rodriguez Holgúın, P. Cuesta, E.
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84. D. López-Sanz, R. Bruña, P. Garcés, M. C. Mart́ın-
Buro, S. Walter, M. L. Delgado, M. Montenegro,
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Ramı́rez, Ensembles of Deep Learning Architec-
tures for the Early Diagnosis of the Alzheimer’s
Disease, Int. J. Neural Syst. 26 (2016) 1650025,
doi:10.1142/S0129065716500258.

99. F. J. Martinez-Murcia, J. M. Gorriz, J. Ramirez and
A. Ortiz, I. For The Alzheimer’s Disease Neuroimag-
ing, A Spherical Brain Mapping of MR Images
for the Detection of Alzheimer’s Disease, Curr
Alzheimer Res. 13 (2016) 575–588, http://www.
ingentaconnect.com/contentone/ben/car/2016/000
00013/00000005/art00012 (accessed on 7 June,
2017).

100. J. P. Amezquita-Sanchez, A. Adeli and H. Adeli,
A new methodology for automated diagnosis of
mild cognitive impairment (MCI) using magne-
toencephalography (MEG), Behav. Brain Res. 305
(2016) 174–180, doi:10.1016/j.bbr.2016.02.035.
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