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A B S T R A C T

Many neuroimaging studies focus on a frequency-specific or a multi-frequency network analysis showing that
functional brain networks are disrupted in patients with Alzheimer's disease (AD). Although those studies en-
riched our knowledge of the impact of AD in brain's functionality, our goal is to test the effectiveness of com-
bining neuroimaging with network neuroscience to predict with high accuracy subjects with mild cognitive
impairment (MCI) that will convert to AD.

In this study, eyes-closed resting-state magnetoencephalography (MEG) recordings from 27 stable MCI (sMCI)
and 27 progressive MCI (pMCI) from two scan sessions (baseline and follow-up after approximately 3 years) were
projected via beamforming onto an atlas-based set of regions of interest (ROIs). Dynamic functional connectivity
networks were constructed independently for the five classical frequency bands while a multivariate phase-based
coupling metric was adopted. Thus, computing the distance between the fluctuation of functional strength of
every pair of ROIs between the two conditions with dynamic time wrapping (DTW), a large set of features was
extracted. A machine learning algorithm revealed 30 DTW-based features in the five frequency bands that can
distinguish the sMCI from pMCI with absolute accuracy (100%). Further analysis of the selected links revealed
that most of the connected ROIs were part of the default mode network (DMN), the cingulo-opercular (CO), the
fronto-parietal and the sensorimotor network.

Overall, our dynamic network multi-frequency analysis approach provides an effective framework of con-
structing a sensitive MEG-based connectome biomarker for the prediction of conversion from MCI to Alzheimer's
disease.

1. Introduction

Alzheimer's disease (AD) is a neurodegenerative disease, currently
considered the most common type of dementia corresponding to
60–70% of the cases in the world population (Wimo et al., 1997). This

disease is clinically defined by a progressive loss of episodic memory
and other cognitive and functional abilities, such as executive functions
(Guarino et al., 2019). Histologically, AD is characterized by the pre-
sence of amyloid plaques, neurofibrillary tangles and brain atrophy
(Braak and Braak, 1991).
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The neurodegenerative cascade in AD begins decades before the
clinical and neuroimaging manifestations of the disease are evident (Jr
et al., 2010). Therefore, establish an early diagnosis is of great sig-
nificance to initiate pharmacological or cognitive treatments that may
slow down the progression of the disorder. One of the most studied
phases in the prognosis of AD is Mild Cognitive Impairment (MCI), since
it entails a higher risk of developing Alzheimer-type dementia (Shah
et al., 2000; Farias et al., 2005, Petersen et al., 2001). In fact, several
longitudinal studies have found that the conversion rate from MCI to
AD is 10–15%/year (Mitchell and Shiri-Feshki, 2009). However, the
progression of this transitional stage between normal aging and de-
mentia has usually been quite variable due to its heterogeneous nature.
The inclusion of more precise clinical criteria and biomarker's char-
acteristics is very important to get an increasingly accurate diagnosis
and prognosis.

In recent years, different neuroimaging modalities have studied AD
progression (Cui et al., 2011; Teipel et al., 2015; Zhang et al., 2014). In
particular, the magnetoencephalography (MEG), which provides an
effective and non-invasive way to capture human brain's functional
connectivity (FC) patterns (Brookes et al., 2011). In this way, the
multivariate phase coupling estimation (PCE) provides a new approach
to reveal the functional coupling based on multivariate phase statistics
between nodes in a large network (Cadieu and Koepsell, 2010). MEG FC
networks are thus a promising approach to characterize brain organi-
zation under both healthy and pathological conditions.

Recently, graph analysis has been used to classify subjects from
different populations (Tijms et al., 2014). A common problem of this
approach is that most of the studies that used network properties es-
tablished an arbitrary threshold from the original weighted network as
the sorting variable. In order to solve these limitations, new techniques
such as the Orthogonal Minimal Spanning Tree (Dimitriadis et al.,
2017a; Dimitriadis et al., 2017b; Dimitriadis and Salis, 2017b) are
currently being implemented in network neuroscience. In this line, we
have recently published an extensive work of the different choices
during the preprocessing steps of MEG resting-state activity tailored to
the design of a reliable connectomic biomarker for MCI (Dimitriadis
et al., 2018a). Complementary, we have also explored the reliability of
both static and dynamic network metrics of source-reconstructed neu-
romagnetic activity at resting-state, obtaining that static network me-
trics are less reliable than dynamic's (Dimitriadis et al., 2018b). In our
previous analysis, we adopted two commonly used bivariate con-
nectivity estimators, the imaginary part of phase locking value (iPLV:
Bruña et al., 2018; Dimitriadis et al., 2018a) and the orthogonalized
correlation of the envelope (CorrEnv; Dimitriadis et al., 2018a).

Many prospective studies have focused on the progression from MCI
to AD (Aguilar et al., 2013; Cui et al., 2018, 2011; Rasero et al., 2017).
For instance, in a recent MEG study of our group found that the increase
in phase synchronization between the right anterior cingulate and
temporo-occipital areas together with the immediate recall score in MCI
patients predicted the conversion to AD with an accuracy of 89.9%
(López et al., 2014a). Nevertheless, there is a scarcity of longitudinal
investigations that have used repeated MEG measurements of these
subjects over time.

In the present study, we used a multivariate connectivity estimator
focused on the multivariate phase of the multi-source activity called
phase coupling estimation (PCE) (Cadieu and Koepsell, 2010). And
moved one further step by adopting well-known graph signal proces-
sing operators called Laplacian transformations (Chung, 2005). A pre-
vious study analyzed the structural connectivity matrices from healthy
controls, early/late MCI and AD (Daianu et al., 2014). These authors
explored the network's algebraic connectivity via graph Laplacian
spectrum and the Fiedler value, which is the second smallest eigenvalue
of the Laplacian matrix. By using this approach, they found reduced
structural network robustness in AD. Focusing on a Laplacian matrix
derived from the functional brain network, they defined a biomarker
based on the Laplacian graph operator (Van Mieghem, 2011).

Thus, in the present work, we studied a sample of MCIs that were
followed-up during an approximate 3-year period. The first MEG scan
was done when all participants were MCI (first condition or session);
the second one (second condition or session) when some of them had
progressed to AD (progressive MCI, pMCI) while others had remained as
MCI in the same period (stable MCI, sMCI). We first used a multivariate
phase coupling estimator applied to frequency dependent source-re-
constructed brain activity to quantify dynamic whole-brain functional
connectivity brain graphs in both conditions. Dynamic Time Wrapping
(DTE) was adopted as a distance metric to estimate the (dis)similarity of
fluctuations of functional coupling strength between the two conditions
and for every pair of ROIs across frequencies. A classification frame-
work extracted the most informative multi-frequency topological fea-
tures supporting an appropriate classifier that succeeded to predict
subjects that converted from MCI to AD.

Section 1 is devoted to describing the dataset, the demographics,
and the analytic pathway. Section 2 demonstrates the novel results
dedicated to the current protocol with follow-up. Finally, Section 3 is
devoted to the discussion of current findings linked to the current lit-
erature and proposing complementary research directions.

2. Materials and methods

2.1. Subjects

MEG recordings were obtained from 54 MCI patients recruited from
the Hospital Universitario San Carlos (Madrid, Spain). All of them were
right-handed (Oldfield, 1971). In Table 1 we introduced their demo-
graphic data.

MCI diagnosis was made according to the National Institute on
Aging-Alzheimer Association (NIA-AA) clinical criteria (Albert et al.,
2011). Besides meeting the clinical criteria, MCI participants had signs
of neuronal injury (hippocampal volume measured by magnetic re-
sonance imaging (MRI). Thus, they might be considered as “MCI due to
AD” with an intermediate likelihood (Albert et al., 2011). Besides, they
were cognitively and clinically followed-up for approximately three
years (every six months) and were then split into two groups according
to their clinical outcome: 1) the “progressive” MCI group (pMCI;
n=27) was composed of those subjects that met the criteria for
probable AD (McKhann et al., 2011) and 2) the “stable” MCI group
(sMCI; n=27) was comprised of those participants that still fulfilled
the diagnosis criteria of MCI at the end of follow-up.

None of the participants had a history of psychiatric or neurological
disorders (other than MCI or AD). General inclusion criteria were: age
between 65 and 80, a modified Hachinski score≤ 4, a short-form

Table 1
Mean ± SD values of the demographic characteristics of the sMCI and pMCI
patients at baseline. MMSE: Mini-Mental State Examination; Apolipoprotein E
(APOE) carrier: There is at least 1 ε4 allele; LHV: Left hippocampal volume;
RHV: Right hippocampal volume.

sMCI (n= 27) pMCI (n= 27) F-value p-value

Age (years) 71,23 ± 3,98 74,81 ± 3,98 26,137 0,009*
Gender (females) 15 18 Fisher test 0,577
APOE 4 carrier 12 13 Fisher test 0,782
Education (years) 8,88 ± 4,49 8,6 ± 4,49 0,0064 0,937
MMSE score (first

MEG)
27,34 ± 3,39 25,95 ± 3,39 32,289 0,079

MMSE (second
MEG)

26,19 ± 4,13 23,65 ± 4,13 29,490 0,092

LHV 0,0024 ± 0,0003 0,0020 ± 0,0003 97,773 0,003*
RHV 0,0025 ± 0,0003 0,0022 ± 0,0003 55,714 0,023*

p-values for between-groups differences were introduced, and *p < .05. Age
differences were assessed with a Mann-Whitney Test. An ANCOVA test, with
age as a co-variable, was used for continuous variables and Fisher's exact test
for gender and APOE differences.
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Geriatric Depression Scale score≤ 5, and T1 magnetic resonance ima-
ging (MRI) within 12months and 2weeks before the two MEG re-
cordings without indication of infection, infarction, or focal lesions
(rated by two independent experienced radiologists; (Bai et al., 2012).
Patients were off those medications that could affect MEG activity, such
as cholinesterase inhibitors, 48 h before recordings.

The study was approved by the Hospital Universitario San Carlos
Ethics Committee (Madrid), and all participants signed a written in-
formed consent prior to participation.

2.2. MRI and medial temporal lobe volumes

3D T1 weighted anatomical brain magnetic resonance imaging
(MRI) scans were collected with a General Electric 1.5 T MRI scanner,
using a high-resolution antenna and a homogenization PURE filter (Fast
Spoiled Gradient Echo (FSPGR) sequence with parameters: TR/TE/
TI= 11.2/4.2/ 450ms; flip angle 12°; 1 mm slice thickness, a
256×256 matrix and FOV 25 cm).

We employed Freesurfer software (version 5.1.0.21) to obtain the
medial temporal lobe volumes, which were normalized to the overall
intracranial volume to account for differences in head volume over
subjects.

2.3. MEG recordings

MEG recordings were acquired with a 306-channel Vectorview
system (Elekta-Neuromag) at the Center for Biomedical Technology
(Madrid, Spain). Data were collected at a sampling frequency of
1000 Hz and band-pass filtered online between 0.1 and 330 Hz
(Fig. 1A).

MEG signals were recorded at the same time of the day in two
different moments: 1) at baseline (first MEG), and 2) 24 ± 6months
(second MEG). Patients were in an awake, resting state with their eyes
closed. For each subject, 5 min task-free data were recorded. Maxfilter
software (v 2.2, correlation threshold=0.9, time window=10 s) was
used to remove external noise of the raw MEG data with the temporal
extension of the signal space separation method with movement com-
pensation (Taulu and Simola, 2006). MEG data were automatically
scanned for ocular, muscle, and jump artifacts using the Fieldtrip
software (Oostenveld et al., 2011). Subsequently, artifacts were visually
confirmed by a MEG expert. The remaining artifact-free data were
segmented in 4 s segments (epochs). An independent component ana-
lysis-based procedure was used to remove the heart magnetic field ar-
tifact. Previously to source data calculation, MEG time series were fil-
tered into delta δ (2–4 Hz), theta θ (4–8 Hz), alpha α (8–12 Hz), beta β
(12–30 Hz), and gamma γ (30–55Hz) frequency bands with a 1500
order finite impulse response filter with Hamming window and a two-
pass filtering procedure.

2.4. Source reconstruction and connectivity analysis

A regular grid with 10mm spacing was created in the template MNI.
This set of nodes was transformed to each participant's space using a
non-linear normalization between the native T1 image (whose co-
ordinate system was previously converted to match the MEG coordinate
system) and a standard T1 in MNI space. The forward model was solved
with a single-shell method (Nolte, 2003) with a unique boundary de-
fined by the inner skull (the combination of white matter, gray matter,
and cerebrospinal fluid) taken from the individual T1. We carried out
the source reconstruction independently for each subject and frequency
band, using a linearly constrained minimum variance (LCMV) beam-
former (Van Veen et al., 1997). Beamforming filters were estimated
with normalized leadfields, regularized covariance matrices averaged
over trials, and a 1% regularization factor. These neural MEG sources
were anatomically parcellated by dividing the cortex into 90 regions of
interest (ROIs) according to the AAL atlas (Tzourio-Mazoyer et al.,

2002). We selected a centroid (CENT) and principal component analysis
(PCA) the representative time series for each brain area (Fig. 1B;
Dimitriadis et al., 2018a). Finally, the functional connectivity (FC) was
assessed using the multivariate phase coupling estimation (PCE), that
evaluates the distribution of phase differences extracted between the
whole set of 90 ROIs (Cadieu and Koepsell, 2010).

We constructed a dynamic functional connectivity graph (dFCG)
separately for every subject, and for the first and second MEG and
frequency bands by analyzing the first 19 epochs of 4 s from the resting-
state (Dimitriadis et al., 2018a, 2018b; Dimitriadis et al., 2017a;
Dimitriadis et al., 2017b; Dimitriadis and Salis, 2017). The outcome of
this procedure is a full-weighted dFCG of size 19× 90×90 (Fig. 1C).
The weights of the produced FCG were normalized within the range
[0,1] with the maximum observed functional coupling strength. At a
second level, we estimated the temporal distance between the two time
series expressing the fluctuation of functional strength of a pair of ROIs
in the first and second (follow-up) MEG sessions. As a proper temporal
distance metric, we adopted a dynamic time wrapping (DTW) em-
ploying Symmetric Kullback-Leibler metric.

DTW has been mainly used in biomedical research to classify signals
into different categories by comparing the signals with standard tem-
plates (Forestier et al., 2012). Another study introduced DTW as a task-
based functional similarity between MEG sensor time series
(Karamzadeh et al., 2013). Here, we employed DTW to quantify the
similarity of the fluctuation of dynamic coupling strength of a pair of
brain areas between 1st and 2nd MEG session.

In Fig. 1D, we demonstrated the PCE functional strength between
left and right precentral gyrus across the 19 temporal segments in the
first and second MEG session. Finally, we computed the DTW temporal
functional strength distance for every pair of ROIs (4005 possible pairs
of the 90 ROIs) between the first and second MEG leading to a matrix
90× 90 per frequency band and subject (Fig. 1E).

Fig. 1 illustrates the preprocessing steps for analyzing neuromag-
netic recordings.

2.5. Feature selection and classification problem

We estimated the temporal distance between the functional strength
time series representing the first and second MEG (Fig. 1D) for every
pair of ROIs with the DTW distance metric. The whole analysis was
repeated for every subject and frequency bands leading to a high
number of potential candidate features. The pair-wise DTW associations
of every possible pair of ROIs (n=90*(90–1)/2= 4005 DTW features)
were tabulated in the upper triangular of a matrix with dimensions 90
(ROIs) ×90 (ROIs) (Fig. 1E). The total number of features is 5 (fre-
quency bands) ×4005 DTW features= 20.025 features per subject.
This pool of features entered in the machine learning scheme adopted
here as a binary classification performance of sMCI vs pMCI subjects.
The feature pool was normalized within every fold and independently
for every training/test set of features by subtracting the mean and di-
viding by the standard deviation of every feature estimated from the
training set. We ran 5-fold cross-validation (CV) scheme where at every
fold, 80% of the subjects (training set) entered the 5-fold CV scheme
where we adopted a multi-cluster feature selection (MCFS) algorithm to
rank our features and select the set that maximizes the classification
performance. Then, we picked up the set of features consistently se-
lected across the 5-folds to train the classifier based on the 80% of
subjects and tested in the rest of 20% (test set). The whole procedure
was repeated 100 times and independently for every frequency band
(Fig. 2). Finally, we aggregated the selected features across the fre-
quencies to design a multiplex biomarker that can potentially predict
the converted subjects. Here, we employed a Support Vector Machine
(SVM) classifier with Radial Basis Function (RBF) kernel.

Το further validate the machine learning part of our study, we ap-
plied an unsupervised feature selection out of the cross-validation
scheme. This scenario is a complementary approach to our main
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Fig. 1. Outline of the proposed analytic scheme.
A. From MEG space to source-reconstructed virtual anatomical space.
B. Virtual representative frequency-dependent time series per ROI.
C. dFCG of the first and second MEG across the 19 temporal segments of 4 s.
D. DTW temporal distance metric between two time series representing the fluctuation of functional strength of left and right precentral gyrus in the first and second
MEG sessions. An example from the δ frequency of the 1st healthy control subjects.
E. DTW-based matrix tabulates the 4005 DTW distances between every possible pair of ROIs by comparing the functional strength time series in the first and second
MEG sessions. An example from the δ frequency of the 1st healthy control subjects.

Fig. 2. Schematic illustration of the adopted CV scheme.
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approach (Roffo et al., 2017).

2.6. Correlate functional connectivity features with MMSE

Canonical Correlation Analysis was introduced by (Hotelling, 1936)
as a multivariate statistical technique that attempts to find linear re-
lationships between two datasets of variables. The two datasets can be
represented as matrices X1 and X2, with dimensions n× p1 and n× p2
respectively, where n denotes the number of subjects and p1 and p2 are
the number of variables (e.g., DTW features and MMSE estimates) in set
X1 and X2, respectively. CCA searches to find the linear transformations
of X1 and X2 that are maximally correlated with each other:

=max q u X X vsubject to u v and P u c P v c1, 1 ( ) , ( )u v
T T

, 1 2 2
2

2
2

1 1 2 2

(1)

CCA assumes that the columns of X1 and X2 are normalized having a
mean of zero and standard deviation of one. The vectors u and v, with
dimensions p1× 1 and p2 × 1, respectively, are the canonical vectors (or
weights); the vectors X1u and X2v, with dimensions n×1, are the ca-
nonical variables; and q is called the canonical correlation.

CCA analysis will be applied to multi-frequency DTW features (30
features) and the delta difference between MMSE of 1st and 2nd session
(dMMSE - 1 feature).

2.6.1. Comparison of PCE's classification performance with bi-variate phase
coupling estimators

A basic issue in functional connectivity analysis because of signal
spread is the signal leakage in MEG and EEG source reconstructed ac-
tivity. In both EEG and MEG, a spatially widely group of sensors detects
the brain activity derived from a single neuronal source. Any correla-
tion between signals estimated at two spatially distance sensors do not
necessarily reflect the interaction of two distinct cortical sources. On
the contrary, at the sensor level, the same sensor can collect signal from
multiple neuronal sources. Therefore, two instantaneously interacting
sources at i.e. zero-phase lag are difficult to be distinguished from a
single source whose activity recorded by the same sensors (Palva et al.,
2018; Wang et al., 2018).

In recent years, novel innovative measures have been introduced to
avoid false positive observations of coupling that can be attributed to
signal spread. These are: Orthogonalized correlation coefficient (oCC)
(Brookes et al., 2012; Hipp et al., 2012), Imaginary part of coherency
(ImC) (Nolte et al., 2004), Phase-lag index (PLI) (Stam et al., 2007),
Weighted phase lag index (wPLI) (Vinck et al., 2011) and Imaginary
phase locking value (iPLV) (Bruña et al., 2018; Dimitriadis, 2018;
Dimitriadis et al., 2018a, 2018b; Dimitriadis et al., 2017a, b;
Dimitriadis and Salis, 2017).

While these methods can be very useful, they have an important
limitation. Ignoring near-zero-lag interaction components makes the
interaction estimate insensitive to leakage; and also true near-zero-
phase-lag interactions will remain undetected.

The estimated interactions can be driven either by (a) true, (b) ar-
tificial or (c) spurious interactions among the reconstructed signals
(Palva et al., 2018). True interactions refer to real interactions between
neuronal sources at specific spatial locations. Artificial interactions
reflect false positives interactions that are caused by real interactions
between neuronal sources. ‘Significant’ coupling is caused by signal
mixing and cross-talk from dominant sources at distant locations re-
flecting residual effects of the signal spread at the source level. Spurious
interactions reflect estimated interactions that are false positives and
also result from cross-talk (Palva and Palva, 2012). Spurious or ghost
interactions occur when signal spread results in pairs of sources in the
vicinity of the actual interacting sources to also display significant
coupling. For instance, Wang et al. (2018) proposed ‘hyperedge bund-
ling’ to further correct for secondary leakage.

In the present study, we reported the results of classification

performance employing also PLV, iPLV and PLI (see section 1 in the
Supplementary material).

2.6.2. Reproducibility of PCE over repeat scan cohorts
To further introduce PCE as a proper multivariate phase coupling

estimator in functional neuroimaging, we estimated PCE in a previously
published repeat scan MEG cohort (see section 2 in the Supplementary
material). We estimated functional connectivity graphs (FCG) with PCE
over different widths of temporal windows employing cosine similarity
as a proper index to quantify the similarity of FCG between the two
cohorts.

2.6.3. Quantifying the effect of ghost interactions via a high-order FCG
(HO-FCG)

We introduced here a way of quantifying the potential leakage of
dynamic functional connectivity analysis via a HO-FCG analysis.
Specifically, for every subject, condition and frequency band, we esti-
mated a dynamic functional connectivity graph (dFCG) with size equals
to {ROIs × ROIs × epochs}. This dFCG is a low-order graph that ta-
bulates the N= (ROIs × (ROIs − 1))/2 and for ROIs= 90, N=4005
possible pair-wise connectivity estimator over experimental time
(epochs). By estimating the cosine similarity between every possible
pair of 4005 pairs across the epoch size, we constructed a HO-FCG with
size equals to 4005× 4005. Finally, we estimated the mean cosine si-
milarity of the resulted HO-FCG as an index of how similar the func-
tional strength across the ROIs for each connectivity estimator is (see
section 3 in the Supplementary material).

2.6.4. Sensitivity of PCE to zero-lag synchronizations
We explored the sensitivity of PCE to zero-lag synchronization using

a Rossler – Lorenz system and different scenarios of volume conduction
effect. We compared PCE's performance over PLV and iPLV bivariate
phase estimators. Our experiments showed that with the increment of
volume conduction effect, PCE demonstrated lower values compared to
PLV and higher compared to iPLV. So, PCE encountered both the real
and imaginary part of the complex signal. In seems that PCE is less
sensitive to volume conduction issues especially to the volume con-
duction of 0.5 (for further details see section 5.C in the Supplementary
material).

2.6.5. Correlation between functional strength and signal power
We estimated the relative signal power for every temporal segment

across ROIs, epochs, conditions and frequency bands using fast fourier
transform. Complementary, we estimated the functional strength per
ROI, condition and frequency band by summing the functional pairwise
strengths between every ROI and the rest of 90–1=89 ROIs.
Practically, we summed the functional strength of every row in the
matrix layout of a FCG. Finally, we estimated the absolute correlation
between relative signal power and functional strength for every ROI,
frequency band and condition across the dimension of epochs. Then,
the absolute correlation values were subgroup averaged across ROIs
first and secondly across subjects for every condition and frequency
band (see section 4 in the supplementary material). We assessed sta-
tistical group and condition-based statistically significant differences
between group-averaged absolute correlation values by adopting
Wilcoxon Rank-Sum Test (p < .05, Bonferroni corrected, p′ < p/6
across frequency bands).

3. Results

3.1. Classification performance

Table 2 summarizes the evaluation of the proposed feature extrac-
tion, selection and classification procedure for the classification of sMCI
versus pMCI subjects. The highest classification performance (CP) was
succeeded in γ frequency while in the multiplexity scenario; an absolute
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accuracy (100%) was observed for CENT. All the frequencies performed
well in the prediction of sMCI versus pMCI. Employing the un-
supervised feature selection approach, we succeeded to absolute dis-
criminate the two groups.

3.2. The topology of the selected features

We demonstrated the selected features-connections derived from
the proposed methodology. Fig. 3 illustrates the network topology of
the selected connections across the five frequency bands adopting a
circular network layout. Demonstration of the 54 subjects in a 3D plot is
given in Fig. 4. We employed the three most discriminative features
selected with both the supervised and unsupervised approaches. It is
clear the tendency of a clear discrimination of the two groups. Fig. 5
shows the group-averaged DTW values of the selected features. One can
see the mixture of higher – lower mean DTW values for pMCI compared
to sMCI. However, in α and also in θ frequency band there is a con-
sistent pattern of significant lower DTW values in pMCI compared to
sMCI.

Figure 6 A–E demonstrates the distribution of the selected connec-
tions within and between five brain networks across the frequency
bands. Fig. 6F tabulates the aggregation of the selected features across
the frequency bands. The analysis revealed most of the selected con-
nections are located between ROIs between DMN-CO, within the DMN,
within CO and between DMN-SM (24 out of 49 features).

3.3. Modeling MMSE changes with the selected DTW features

In an attempt to link differences of MMSE between the first and the
second MEG with DTW features, we adopted canonical correlation
analysis (CCA) (Hotelling, 1936). We first estimated the delta difference
of MMSE1stMEG – MMSE2ndMEG while the whole analysis was repeated
twice independently for each group. CCA analysis was performed on 22
pMCI and 27 sMCI subjects. Fig. 7 demonstrates the delta difference of
MMSE1stMEG−MMSE2ndMEG for pMCI and sMCI. Fig. 8 plots the ca-
nonical variables independently for the two groups.

The model in both groups comprises 4 vectors:

• U1, a {22 for pMCI, 27 for sMCI}×1 vector of individual subject
weights derived from the multi-frequency DTW set of features (in
which each value describes the extent to which a given subject is
positively or negatively correlated with this mode of population
variation with respect to DTW values)

• V1, a {22 for pMCI, 27 for sMCI}× 1 vector, of individual subject
weights, derived from the delta difference of MMSE scores between
pre and post condition (and which is highly correlated with U1,
r=0.87)

• A1, a 1 value of CCA mode weight relating to the 1 component re-
lated to delta difference of MMSE scores between pre and post
condition fed into the CCA (i.e., the extent to which combinations of
delta difference of MMSE scores between pre and post condition
relate to mode weights-vector U1)

• B1, a {30 multi-frequency DTW set of features}× 1 vector

describing the extent to which each DTW value relates to mode
weights-vector V1.

The p-value of the Chi-Square test for both CCA was p= .00014
(r=0.987) and p= .00031 (r=0.968) for pMCI and sMCI, corre-
spondingly.

For the pMCI group, the analytic equations of the two canonical
variables are:

= ×
=

× + × ×
+ × ×

× + +
+

+

× + × ×

× ×
+ × × + ×
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For the sMCI group, the analytic equations of the two canonical vari-
ables are:

= ×
= × +

× + × ×
× × + +

+ +

× + × + × ×
+ × × + ×
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CC DTW

DTW DTW DTW
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DTW DTW DTW
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0.8103 2.0579
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5.4130 2.0202 0.5917 0.1935

8.1649
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CCA revealed characteristic sub-groups within both groups.
In Fig. 8A, one can see that there are six sub-groups for the 22 pMCI

and eleven sub-groups for the 27 sMCI.
Fig. 9 illustrates the b-values of the 49 multi-frequency features

related to CC3 and CC4 in a) pMCI and b) sMCI groups. One can clearly
see that the contribution of α and β frequency in CCA for the pMCI
group is negligible compared to sMCI.

3.4. PCE outperformed bivariate phase estimators

PCE overcame the three adopted bivariate phase connectivity esti-
mators based on classification performance (see section 1 and STable 1
in the Supplementary material). A consistent observation is that defi-
nition of representative virtual time series per ROI plays a key role in
the classification performance where CENT overcame PCA across the
four connectivity estimators.

Table 2
Evaluation of classification performance using DTW values in every frequency band and in the multiplexity scenario in both PCA and CENT methods.

PCA CENT

Classification Performance Sensitivity Specificity Classification Performance Sensitivity Specificity

δ (8 features) 0.83 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.88 ± 0.01 0.88 ± 0.01 0.89 ± 0.01
θ (10 features) 0.82 ± 0.02 0.81 ± 0.02 0.80 ± 0.01 0.87 ± 0.02 0.85 ± 0.02 0.88 ± 0.01
α (9 features) 0.76 ± 0.01 0.72 ± 0.02 0.78 ± 0.01 0.79 ± 0.01 0.7 ± 0.02 0.81 ± 0.01
β (10 features) 0.82 ± 0.02 0.81 ± 0.02 0.80 ± 0.02 0.87 ± 0.02 0.88 ± 0.02 0.85 ± 0.02
γ (12 features) 0.91 ± 0.02 0.87 ± 0.02 0.86 ± 0.00 0.94 ± 0.02 0.88 ± 0.02 1.00 ± 0.00
δ+ θ+α+β+γ (7+ 4+11+2+6 features) 0.96 ± 0.00 0.92 ± 0.00 0.93 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
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Fig. 3. A visualization of the selected frequency-dependent connections using a circular representation of the 90 anatomical ROIs. The left semi-circle represents the
45 ROIs of the left hemisphere while the right semi-circle the homolog ROIs of the right hemisphere. We colored differently the ROIs that belong to a sub-network.
Topological layouts of the selected DTW features for each frequency band and in the multiplex scenario.
A. 8 features for δ.
B. 10 features for θ.
C. 9 features for α.
D. 10 features for β.
E. 12 features for γ.
F.30 features for the multiplex integrated approach.
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3.5. High reproducibility of PCE in a repeat scan scenario

S1 illustrates the group-averaged cosine similarity of PCE between
FCGs derived from the two scan sessions over the studying of the fre-
quency bands. Our results revealed a high reproducibility of functional
connectivity patterns based on PCE supported by low cosine similarity
index (< 0.1; see section 2 in the Supplementary material).

3.6. Quantify a potential effect of ghost interactions via a HO-FCG
approach

S3 demonstrates the group-averaged mean cosine similarity index
derived from a HO-FCG for every connectivity estimator, frequency
band and for both PCA-CENT methods (see section 3 in the
Supplementary material). Following a statistical analysis, we revealed
that PCE demonstrated the lowest mean cosine similarity value across
frequency bands and in both PCA-CENT. Interestingly, the mean cosine
values were consistent across frequency bands and in both PCA-CENT
methods for every connectivity estimator.

3.7. Sensitivity of PCE to zero-lag synchronizations

We explored the sensitivity of PCE to zero-lag synchronization using
a Rossler – Lorenz system and different scenarios of volume conduction
effect. We compared PCE's performance over PLV and iPLV bivariate
phase estimators over various coupling strength and volume conduc-
tion/spurious level effects.

Under this assumption, volume conduction/source leakage occurs
with zero-lag propagation. In other words, the phase difference of the
part of the signals related to such spurious connectivity must be zero.

(For further details see section 5 in the Supplementary material).

3.8. Correlation of functional strength and signal power

S4 illustrates the subgroup-averaged absolute correlation values for
each condition and frequency band (see section 4 in in the
Supplementary material). The subgroup-averaged absolute correlation
values were below 0.3 with high variability where we didn't reveal any
interesting pattern or any group-difference across the frequency bands.

4. Discussion

In the current work, we presented a multivariate functional con-
nectivity approach to investigate its ability to predict the progressing
from MCI to AD using a CV and SVM classifiers. First, we computed the
PCE to study the distribution of phase differences from the 90 ROIs.
Then, we built a dFCG for each subject and frequency band with the

aim to estimate the temporal distance between the two times series and
to observe the FC changes over time of each pair of ROIs between the
first and second MEG session by means of the DTW. Finally, based on
the DTW matrices, we obtained a pool of features for each frequency
band that entered in a 5-fold CV classifier, where a MCFS algorithm
helped to rank and select the set of features for classification.
Additionally, a SVM with RBF kernel was used under a multi-layer,
multi-frequency scenario to design a multiplex biomarker in order to
predict the conversion from MCI to AD. Our results revealed a better
performance for CENT compared to PCA approach while PCE out-
performed highly used bivariate phase connectivity estimators (see
Supplementary material).

Thus, we found that all frequency bands on its own succeeded and
had a good and strong performance in classifying the two groups, being
the gamma band (γ) the frequency with the highest accuracy in the
classification (94%). Importantly, when we integrated in a multi-layer
scenario, the multi-frequency DTW features, we obtained a classifica-
tion performance of 100% to discriminate between sMCI and pMCI. We
obtained an absolute accuracy with the CENT method compared to the
PCA. Although it is known that such a perfect accuracy is not necessary
related to the predictive power of the model (Valverde-Albacete and
Peláez-Moreno, 2014), this result clearly suggest that in our sample
there are salient differences in the multivariate PS patterns across the
whole frequency spectrum between MCI patients who convert to AD
after 3 years and those who not. The SVM technique is able to reveal
such differences and use them to separate very efficiently converters
from non-converters, which opens the way to its application in the
clinical neurology.

A recent study reported an impairment of hippocampus and pos-
terior brain areas in AD using MEG source-reconstructed activity (Yu
et al., 2017). They followed a multi-layer approach constructed via the
integration of different functional brain networks layers each one re-
presented a frequency-dependent network layer. Here, we showed that
following a proper feature selection from the pool of DTW features
across the multi-frequency network layers could lead to a better per-
formance compared to single network layers. Additionally, the in-
tegration of single-layer features across the frequency bands produced
lower classification accuracies which further supported our strategy.
However, we will attempt in future studies to integrate both intra and
cross-frequency coupling estimates in a single network layer under the
framework of dominant intrinsic coupling model (DICM) (Dimitriadis
et al., 2018a; Dimitriadis et al., 2017a, b). It is important to study all
possible interactions simultaneously and not isolated as it is highly used
till now from the neuroscience community.

Nowadays, there is growing evidence that the first stages of AD are
associated with profound functional alterations of brain networks that
seem to be structurally largely intact. For example, hippocampal

Fig. 4. Illustration of both groups in a 3D plot using the three most discriminative features. Every colored dot corresponds to a single subject. One can clearly see the
tendency of a clear linear discrimination of both groups.
X-axis: Right precentral – Right Heschl's gyrus from δ.
Y-axis: Right Caudate Nucleus – Right Putamen from θ.
Z-axis: Left Left midcingulate – Right Cuneus from α.
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hyperactivity and the disruption of the DMN have been demonstrated in
people at genetic risk for AD (Bookheimer et al., 2000; Quiroz et al.,
2010) and people with early AD (Dickerson et al., 2005)

It is known that during this early phase of the disease, soluble Aß
oligomers and amyloid plaques alter the function of local neuronal
circuits and large-scale networks by disrupting the balance of synaptic
excitation and inhibition (E/I balance) in the brain. Recently, the
analysis of animals models of AD revealed that an Aß-induced change
of the E/I balance caused hyperactivity in cortical and hippocampal
neurons, a breakdown of slow-wave oscillations, as well as network
hypersynchrony (Grienberger et al., 2012), thus suggesting that hy-
peractivity is one of the earliest dysfunctions in the pathophysiological
cascade initiated by abnormal Aß accumulation (Busche and Konnerth,
2016).

Later in the disease this hyperactivity, mainly observed in earlier
stages of AD, is followed by a hypoactivity (Francis et al., 1993; Palop
and Mucke, 2010), which is characteristic of more advance stages of the

disease. Thus, AD has been considered as a “disconnection syndrome”,
not only due to the death of neurons and connections, but also to the
disruption of functional and structural brain networks (Delbeuck et al.,
2003).

Regarding the topology of the features that exhibited the highest
classification performance, we found that most of the regions belonged
to a small set of brain networks: the DMN, CO, FP and also, fronto-
temporal networks, whose alteration is related to the loss of neurons
and synapses that causes major atrophy and malfunctioning of those
brain areas that are usually affected in AD, such as temporal gyrus,
parietal lobe, and parts of the frontal cortex and cingulate gyrus (Li
et al., 2018). As a result of this brain degeneration, AD has been con-
sidered as a disconnection syndrome (Delbeuck et al., 2003) as men-
tioned earlier. Our results revealed the involvement of the DMN as a
feature affected by the course of the disease over time. It is well known
that this network is usually disrupted during the continuum of AD
(Canuet et al., 2015; Garcés et al., 2014; Mevel et al., 2011; Wu et al.,

Fig. 5. Group-averaged DTW values for the selected features demonstrated topologically in Fig. 3 in both groups and every frequency band.
A. δ frequency band.
B. θ frequency band.
C. α frequency band.
D. β frequency band.
E. γ frequency band.
F. multi-frequency/multiple scenario. Vetical lines separate the subset of frequency dependent DTW features.
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2011), due to the amyloid deposition (Buckner et al., 2009; Sheline
et al., 2010). Additionally, we found the engagement of the fronto-
parietal and cingulo-opercular networks in the classification between
sMCI and pMCI. These networks are responsible for coordinating and
controlling the executive functions in the brain, which are typically
impaired in AD and MCI patients (Lafleche and Albert, 1995; Perry and
Hodges, 1999). Lastly, the frontotemporal network resulted in a feature
from the classification analysis is usually affected by the course of the
disease and related to the common memory impairments found in AD
(Buckner, 2004). Additionally, several studies reported that the inter-
action between these executive networks and the DMN is essential for
performing complex cognitive tasks, being considered as a marker of
cognitive health (Fox et al., 2005; Spreng et al., 2010).

There is a significant growing interest in detecting early markers of
AD pathology linked with alterations of brain functionality in the very
early stages of the disorder. Previous studies explored static con-
nectivity analysis on the source level in subjective cognitive decline
(SCD) subjects (López-Sanz et al., 2016) and also for the first time in
healthy controls, SCD and MCI subjects (López-Sanz et al., 2017) tar-
geting to alpha frequency band. They revealed aberrant functional
connections in both SCD and MCI compared to healthy controls vali-
dating the sensitivity of MEG source connectivity to detect the pre-
clinical pathology of human brain dynamics. Here, we analyzed dy-
namic source functional connectivity networks in pre and post
condition aiming to define a connectomic biomarker that can

differentiate the stable from progressive MCI patients. We adopted DTW
as a proper distance measure between two time-series here that re-
present the fluctuations of functional connectivity strength between
two ROIs in pre and post condition. Higher values of DTW can be in-
terpreted as a temporally decoupled index while lower values as a
temporal coupled index. Here, in the single-frequency (layer) approach,
we revealed higher DTW values for pMCI compared to sMCI in theta
and alpha frequencies while the rest of frequencies demonstrating a
mixed behaviour (Fig. 5). The topology of these selected DTW-based
features is shown in Fig. 3. López-Sanz et al. (2017)) showed lower
functional strength for SCD and MCI in alpha band. Here, we ad-
ditionally revealed a temporally asynchronous behaviour of dynamic
functional connectivity in theta and alpha, two frequency bands related
to cognitive and memory performance (Klimesch, 1999; Moretti, 2015).

The topology of the multi-frequency (layer) DTW features showed in
Fig. 3F and tabulated explicitly in Table 3 involves a spatial distributed
network. Particularly, most of the connections involve the frontal brain
areas, parietal, thalamus, (para) hippocampal and supplementary
motor brain areas. From the 30 features, only 3 included interhemi-
spheric links and the rest were equally classified as intrahemispheric in
both hemispheres. A recent fMRI study observed connectivity differ-
ences between late MCI and early MCI in regions including the frontal
lobe regions (medial frontal gyrus, precentral gyrus, postcentral gyrus),
temporal lobe regions (superior temporal gyrus, middle temporal gyrus,
frontal gyrus, hippocampus), and thalamus (Cai et al., 2015).

Fig. 6. Summarization of the selected features within
and between well-known brain networks.
A–E) From δ to γ, a representative 2D mapping of the
selected features within and between five brain net-
works.
F) We aggregated the selected features across the five
frequency bands shown in A-E).
(DMN: default mode network, FP: fronto-parietal, O:
Occipital, CO: Cingulo-opercular, SM: sensorimotor).

Fig. 7. Delta difference of MMSE1stMEG – MMSE2ndMEG in: A) pMCI group and B) sMCI group.
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We revealed an interesting subset of DTW-features in pairs of ROIs
between the thalamus and other parts of the brain. These thalamo-re-
lated networks include thalamo-frontal, thalamo-parietal, thalamo-
temporal and thalamo-DMN subnetworks. The decreased temporally
decoupled functional connectivity expressed with higher DTW values
for pMCI compared to sMCI between the thalamus and the aforemen-
tioned brain areas might suggest reduced functional integrity of tha-
lamo-related networks and increased temporally coupled functional
connectivity (lower DTW values) indicated that pMCI patients could use
additional brain resources to compensate for the loss of cognitive
function (Fig. 3F & Table 3).

The olfactory system is a well-defined network that has been im-
plicated in early stages of the AD, marked by impairment in olfaction
and the presence of pathological hallmarks of the AD. There are outputs
from the olfactory system that reach the parahippocampal region of the
brain, including the perirhinal, parahippocampal, and entorhinal cor-
tices (Eichenbauma, 1998). The primary olfactory cortex has connec-
tions to brain regions, such as the hippocampus (Haberly, 2001) which
is altered in AD. Overall, the olfactory system has substantial connec-
tions to areas of the brain that are related to memory and display AD
pathology (Franks et al., 2015). Here, we revealed higher DTW values
between olfactory and parahippocampal brain areas in pMCI compared
to sMCI.

Functional brain connectivity can be quantified with a large number
of techniques that can be separated into model-based and data-driven
techniques. A famous technique that has been used widely in the lit-
erature is the PLV (Lachaux et al., 1999), which is a data-driven con-
nectivity estimator that can capture non-linear interactions between
pairs of brain signals. Here, for the first time in MEG and especially in
the study of MCI, we adopted a multivariate extension of PLV, the so-
called PCE (Cadieu and Koepsell, 2010). There is a big interest in ex-
tending bivariate functional connectivity estimators that quantify the

interdependence between two time series to its multivariate extension
(Pereda et al., 2005). Pair-wise connectivity analysis is more sensitive
to spurious correlations, particularly in those cases where one driver
lead two responses. In that scenario, both responses may have a
common driver even when seem to be completely independent
(Sakkalis, 2011). The advantage of PCE estimator is that it is data-
driven and does not depend on the reliability of the fitted MVAR
(Multivariate Vector Auto-Regressive) model. We reported in a second
repeat-scan dataset, the high reproducibility of PCE across experimental
time at resting-state. Additionally, PCE outperformed the frequent used
bivariate phase connectivity estimators of PLV, PLI and iPLV (see Sec-
tion 1 in the Supplementary material).

Neuroscience community that works under the umbrella of func-
tional connectivity searched to identify connectivity estimators and
techniques to remove zero-phase lag interactions that are spread from
the same neuronal sources, which are referred to as primary signal
leakage in source reconstructed EEG/MEG data. Moreover, the primary
signal leakage may contribute in spurious estimates of functional con-
nectivity between brain areas surrounding two genuinely connected
brain regions (Palva and Palva, 2012). Widely used connectivity esti-
mators like oCC (Brookes et al., 2012; Hipp et al., 2012), ImC (Nolte
et al., 2004), PLI (Stam et al., 2007), wPLI (Vinck et al., 2011) and iPLV,
(Bruña et al., 2018; Dimitriadis, 2018; Dimitriadis et al., 2018a, 2018b;
Dimitriadis et al., 2017a, 2017b; Dimitriadis and Salis, 2017) are not
able to completely eliminate the secondary leakage (Palva et al., 2018;
Wang et al., 2018). A recent study (Wang et al., 2018) has developed a
novel

approach, called “hyperedge bunding”, to further correct the sec-
ondary leakage. We will consider this new method in future studies
under the framework of designing robust connectomic biomarkers for
MCI. Here, we showed that the adopted multivariate connectivity es-
timator PCE outperformed bivariate phase estimators in terms of

Fig. 8. CCA analysis of DTW selected features with delta difference of MMSE1stMEG – MMSE2ndMEG in: A) pMCI group and B) sMCI group.

Fig. 9. Beta values derived from CCA between delta differences of MMSE versus DTW features.
Red vertical lines dissociate the beta values related to frequency-dependent features in: A) pMCI group and B) sMCI group.
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classification performance while it was proved high reproducible.
Additionally, it behaves well in zero-lag effects and the adopted HO
approach showed lower values of cosine similarity values compared to
bivariate phase estimators (see Supplementary material). Following, a
volume conduction scenario, we showed that PCE is also insensitive to
zero-lag synchronization while it is more sensitive to the real part of the
complex signal compared to iPLV.

Intrinsic coupling is a characteristic feature of ongoing brain ac-
tivity with rich spatiotemporal patterns. There are two intrinsic cou-
pling types: the phase coupling and the correlation of the envelope of
the band-limited oscillatory brain signals (Engel et al., 2013). There is a
general hypothesis that phase coupling has a loose relationship with
structural connectivity while the correlation of the envelope a tighter
one. Additionally, phase coupling seems to be more sensitive to aber-
rant functional connectivity in various brain disorders even in the ab-
sence of structural changes (Marzetti et al., 2013). However, more
neurophysiological explorations of both correlation of the envelope and
phase coupling need to be estimated between virtual source space time
series (Brookes et al., 2011; Dimitriadis et al., 2018a, 2018b; Hipp
et al., 2012).

Another novelty of our study is the adaptation of DTW as a proper
distance metric to quantify the similarity of the fluctuated dynamic
functional phase coupling strength of a pair of brain areas between 1st
and 2nd MEG session. In biomedical research, DTW has been mainly
used to classify signals into different sub-groups by comparing each one
with standard templates (Forestier et al., 2012). Another study first
employed DTW as a novel task-based functional connectivity estimator
between MEG sensor time series tailored to ERP multichannel record-
ings (Karamzadeh et al., 2013).

We adopted a well-designed cross-validated machine learning ap-
proach that succeeded to extract meaningful DTW features related to
(dis)similarity of the temporal fluctuation of the functional coupling
between the first and the second MEG recording. Our analysis un-
tangled informative DTW features across the brain areas and the fre-
quency bands studied. We believe that our results are very interesting

succeeding to place MEG on the top of the hierarchy of neuroimaging
modalities which are sensitive to prodromal stages of AD. Current
analysis has basic advantages over previous analytic attempts. First of
all, we adopted a multivariate phase coupling estimator instead of a
bivariate connectivity estimator. Secondly, a time-varying approach has
been followed leading to the construction of time series describing the
fluctuation of coupling strength across experimental time and at every
frequency band. Finally, machine learning supported the effectiveness
of the current strategic analytic pathway.

CCA analysis between the delta difference of MMSE1stMEG –
MMSE2ndMEG and the selected DTW values revealed a stronger multi-
frequency contribution of DTW values to the MMSE1stMEG –
MMSE2ndMEG for sMCI in comparison with pMCI. Especially, the con-
tribution of α and β frequency bands to the CCA for the pMCI group is
negligible compared to sMCI one. This result is supported by recent
evidence that α disruption starts from subjective cognitive decline stage
(López et al., 2016), and finish with those MCI that finally progressed to
AD (Lopez et al., 2014b). Moreover, α and β network disruption has
been observed in AD (Koelewijn et al., 2017).

Our study presents a data-driven analytic pathway combining
source-reconstructed template-oriented brain activity at resting-state,
network neuroscience, and machine learning techniques. Our results
are very informative in the understanding of the brain alterations oc-
curred in subjects that will progress from MCI to AD. MEG is a neu-
roimaging modality that the last few years has demonstrated its po-
tentiality to reveal novel and complementary information to functional
(fMRI) related to prodromal stages of AD (Dimitriadis et al., 2018a;
Koelewijn et al. 2017; López et al. 2016; Peng et al. 2016). We strongly
believe that MEG can play a pivotal role in the application of such
methodologies in a daily clinical routine practice supported also by its
lower cost compared to fMRI.

Data availability

The data that support the findings of this study are available from

Table 3
Brain connections (pair of regions) described in Fig. 3. A–E. (*) indicates interhemispheric links.

δ θ α β γ

FrontMid_L & Rectus_L FrontMidOrb_L & FrontMid_L FrontSupOrb_L & TempMid_L RolOper_L & FrontMidOrb_R (*) FrontMidOrb_L & CingAnt_R (*)
Insula_L & TempPoleSup_L TempPoleMid_L & FrontSupMed_R

(*)
FrontSupOrb_L & Precentral_L RolOper_L & Heschl_R (*) CingAnt_R & Caudate_R

TempSup_L & FrontMidOrb_L TempInf_L & SupraMarg_L FrontMedOrb_L & Thalamus_L FrontInfOper_L & TempSup_R (*) Hippo_L & FrontInfOrb_R (*)
OccSup_L & SupraMarg_L Thalamus_L & ParacentLob_R (*) CingMid_L & Cuneus_R (*) FrontMid_L & Putamen_R (*) Amygdala_L & ParacentLob_R (*)
FrontSupMed_L & FrontMedOrb_L Angular_L & Fusiform_R (*) TempInf_L & Precentral_L FrontMedOrb_L & FrontSupMed_R

(*)
Hippo_L & TempInf_L

CingAnt_R & ParietInf_R Caudate_R & Putamen_R Calc_R & ParietInf_R TempPoleMid_L & ParietSup_L Angular_R & Heschl_R
ParaHippo_R & TempInf_R FrontSupOrb_R & TempInf_R FrontMidOrb_R & Precentral_R OccInf_L & ParacentLob_R (*) RolOper_R & Postcentral_R
Precentral_R & Heschl_R FrontInfOper_R & Insula_R FrontInfOrb_R & SuppMotorA_R OccMid_L & CingPost_R (*) SuppMotorA_R & FrontSupMed_R

FrontInfOrb_R & RolOper_R RolOper_R & FrontSupMed_R Cuneus_L & Insula_R (*) Olf_R & ParaHippo_R
FrontSupMed_R & Heschl_R Cuneus_R & CingMid_R CingMid_R & Caudate_R

δ+θ+α+β+γ

Insula_L & TempPoleSup_L Thalamus_R & SupraMarg_R
CingAnt_R & Caudate_R Caudate_R & Putamen_R
CingMid_L & Cuneus_R Thalamus_R & TempPoleMid_R
Hippo_L & FrontInfTri_R ParaHippo_R & TempInf_R
Hippo_L & Rectus_R (*) CingMId_R & TempSup_R
ParaHippo_L & TempPoleMid_R (*) Postcentral_R & RolOper_R
TempMid_L & FrontSupOrb_L Precentral_R & FrontalMidOrb_R
TempInf_L & Precentral_L Precentral_R & Heschl_R
FrontSupOrb_L & Precentral_L RolOper_L & Heschl_R (*)
Calc_R & ParietInf_R Olf_R & ParaHippo_R
Cuneus_R & CingMid_R FrontInfOper_R & Insula_R
Thalamus_L & ParacentLob_R (*) SuppMotorA_R & FrontSupMed_R
FrontMid_R & Putamen_L (*) FrontInfOrb_R & SuppMotorA_R
FrontMedOrb_L & Thalamus_L RolOper_R & FrontSupMed_R
Cuneus_R & CingMid_L FrontMidOrb_L & FrontInfOrb_L
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