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Hypersynchronization has been proposed as a synaptic dysfunction biomarker in the Alzheimer’s disease continuum, reflecting the

alteration of the excitation/inhibition balance. While animal models have verified this idea extensively, there is still no clear

evidence in humans. Here we test this hypothesis, evaluating the risk of conversion from mild cognitive impairment (MCI) to

Alzheimer’s disease in a longitudinal study. We compared the functional resting state eyes-closed magnetoencephalographic net-

works of 54 patients with MCI who were followed-up every 6 months. According to their clinical outcome, they were split into:

(i) the ‘progressive’ MCI (n = 27) group; and (ii) the ‘stable’ MCI group (n = 27). They did not differ in gender or educational

level. For all participants, two magnetoencephalographic recordings were acquired. Functional connectivity was evaluated using the

phase locking value. To extract the functional connectivity network with significant changes between both magnetoencephalo-

graphic recordings, we evaluated the functional connectivity ratio, defined as functional connectivity post-/pre-condition, in a

network-based statistical model with an ANCOVA test with age as covariate. Two significant networks were found in the theta

and beta bands, involving fronto-temporal and fronto-occipital connections, and showing a diminished functional connectivity

ratio in the progressive MCI group. These topologies were then evaluated at each condition showing that at baseline, patients with

progressive MCI showed higher synchronization than patients with stable MCI, while in the post-condition this pattern was

reversed. These results may be influenced by two main factors in the post-condition: the increased synchrony in the stable MCI

patients and the network failure in the progressive MCI patients. These findings may be explained as an ‘X’ form model where the

hypersynchrony predicts conversion, leading subsequently to a network breakdown in progressive MCI. Patients with stable MCI

showed an opposite phenomenon, which could indicate that they were a step beyond in the Alzheimer’s disease continuum. This

model would be able to predict the risk for the conversion to dementia in MCI patients.
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Introduction
Alzheimer’s disease is a neurodegenerative disorder, which

is clinically defined by a progressive loss of memory and

other cognitive and functional abilities. It is considered

the most common type of dementia, corresponding to

�60–80% of cases (Alzheimer’s Association, 2016). The

new inclusion of biomarkers by the National Institute on

Aging-Alzheimer’s Disease Association (NIA-AA), such as

amyloid-b deposition or neuronal injury, has been con-

sidered an important advance to characterize the disease

in vivo (McKhann et al., 2011). However, the neuropatho-

logical and cognitive alterations that occur over the course

of the disease are not as linear as commonly contemplated

(Jack et al., 2014). This enormous complexity makes the

prediction regarding which individuals will finally progress

to Alzheimer’s disease difficult to answer.

Recent animal model studies have shown that during the

Alzheimer’s disease continuum, a cascade of biochemical

and molecular changes produces a disruption of the exci-

tation/inhibition balance (E/I balance), leading to the alter-

ation of local and large-scale networks of the brain (Busche

and Konnerth, 2016). One of the main pathological hall-

marks of Alzheimer’s disease, and largely responsible of the

E/I imbalance, is amyloid-b deposition, which is primarily

distributed over hippocampus and neocortex (Braak and

Braak, 1991; Selkoe, 1991). Amyloid-b is primarily pro-

duced by the endocytosis of a transmembrane protein,

amyloid precursor protein (APP), which modulates synapse

formation and function (Priller et al., 2006). APP inside the

neuron increases the amyloid-b production that is secreted

into the brain interstitial fluid. The accumulation of soluble

amyloid-b within the interstitial fluid becomes abnormal

during Alzheimer’s disease as amyloid-b starts to aggregate

into soluble amyloid-b oligomers and extracellular amyloid-

b plaques (Cirrito et al., 2005). Both amyloid-b forms exert

a toxic effect on cells, causing the synaptic dysfunction that

is a critical characteristic of the pathogenesis of Alzheimer’s

disease (Selkoe, 2002). In addition, in the vicinity of amyl-

oid-b plaques, pyramidal neurons exhibit hyperactivity,

possibly due to the lack of GABAergic perisomatic synapses

(Garcia-Marin et al., 2009). This increase of activity gen-

erates, in turn, an increment of the APP endocytosis, rein-

forcing the aberrant circle of amyloid-b production. This

hyperactivity, mainly observed in earlier stages of the

Alzheimer’s disease continuum, is followed by a hypoactiv-

ity (Francis et al., 1993; Palop and Mucke, 2010), which is

characteristic of more advanced stages of the disease. For

this reason Alzheimer’s disease has been considered as a

‘disconnection syndrome’, not only because of the death

of neurons and connections, but also because of the

disruption of functional and structural brain networks

(Delbeuck et al., 2003).

With this background in mind, here we propose to test

this E/I balance in a sample of subjects with mild cognitive

impairment (MCI) from a longitudinal perspective. This

symptomatic pre-dementia stage entails a higher risk of de-

veloping Alzheimer’s disease (Jack et al., 2011), being fun-

damental to the characterization of those profiles precluding

dementia. To this end, we used magnetoencephalography

(MEG), which is a non-invasive neuroimaging technique

that directly measures the primary neural activity of the pyr-

amidal neurons, allowing us to carry out follow-up studies

of synaptic disruption (Stomrud et al., 2010; Fernández et

al., 2013; López et al., 2016). With the aim to explore long-

range connections, we used functional connectivity (Friston,

1994), a measure that reflects the statistical interdependen-

cies between two timeseries of physiological activity. In two

previous studies carried out by our group (Bajo et al., 2012;

López et al., 2014), we observed an increment of functional

connectivity in those patients with MCI that progress to

Alzheimer’s disease [progressive (p)MCI] compared to

those that remained stable [stable (s)MCI]. This hypersyn-

chronization was also associated with the increased load of

amyloid in the posterior regions (Nakamura et al., 2017)

and with the increased levels of p-tau in the CSF (Canuet

et al., 2015). These results show the hyperactivity previously

explained in the animal model studies, but longitudinal stu-

dies with repeated measures are needed to track the time

dynamics of this physiological phenomenon. Therefore, in

the present study we followed-up a sample of MCI patients

over a 3-year period, with their magnetic signals measured

twice during this period. With the intent to better under-

stand the relationship between connectivity changes and dif-

ferent features of Alzheimer’s disease, we related functional

connectivity results with cognitive (neuropsychological tests)

and structural (medial temporal lobe volumes) information.

Finally, we proposed an explanatory model—‘X’—based —

on our synchronization results, which describes how the E/I

imbalance occurs during the disease, considering hypersyn-

chronization as a marker of progression from MCI to

Alzheimer’s disease. To the best of our knowledge, repeated

MEG measures together with this combination of variables

have never been investigated in previous studies.

Materials and methods

Subjects

The initial sample of our study consisted of 145 MCI patients
who were recruited from the Hospital Clı́nico Universitario

2 | BRAIN 2019: 0; 1–15 S. Pusil et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

z320/5601465 by guest on 21 O
ctober 2019



San Carlos (Madrid, Spain). Of this original sample, 54 were

conscripted again for a second MEG scan after �3 years (24

� 6 months). They were all right-handed (Oldfield, 1971) and
native Spanish speakers (see Table 1 for their demographic and

clinical data).
All participants were screened with standardized diagnostic

instruments and received an exhaustive neuropsychological

assessment as previously described (López et al., 2016). The

MCI diagnosis was established according to the NIA-AA cri-
teria (Albert et al., 2011), which include: (i) self- or inform-

ant-reported cognitive complaints; (ii) objective evidence of

impairment in one or more cognitive domains; (iii) preserved
independence in functional abilities; and (iv) not demented

(McKhann et al., 2011). Besides meeting the clinical criteria,

MCI participants had signs of neuronal injury (hippocampal
volume measured by MRI). Therefore, they may be con-

sidered as ‘MCI due to Alzheimer’s disease’ with an inter-

mediate likelihood (Albert et al., 2011). They were

cognitively and clinically followed-up every 6 months and
then split into two groups according to their clinical outcome:

(i) the pMCI group (n = 27) was composed of those subjects

that met the criteria for probable Alzheimer’s disease
(McKhann et al., 2011); and (ii) the sMCI group (n = 27),

composed of matching participants that still fulfilled the diag-

nosis criteria of MCI at the end of follow-up, and were ran-
domly selected from the remaining 118 sMCI patients. The

average time from first to second MEG was 27 � 7 months

for the sMCI group and 16 � 9 months for the pMCI par-

ticipants. In the pMCI group, the second MEG was per-
formed when subjects progressed to Alzheimer’s disease

and, consequently, their follow-up time was shorter.

Additionally, we included a group of 27 cognitively intact

older adults as a reference to help the interpretation of the
functional connectivity results obtained in the group compari-

son. The cognitively normal group was created mirroring the

age, education and gender distribution of both MCI patient
groups. The hippocampi volumes of the cognitively normal

group were significantly higher (P-value 5 0.05, ANCOVA

test with age as covariate) than both MCI groups.
None of the participants had a history of psychiatric or

neurological disorders (other than MCI or Alzheimer’s dis-
ease). General inclusion criteria were: age between 65 and

80 years, a modified Hachinski score 44, a short-form

Geriatric Depression Scale score 45, and T1 MRI within 12

months and 2 weeks before the two MEG recordings without
indication of infection, infarction, or focal lesions (rated by

two independent experienced radiologists) (Bai et al., 2012).

Patients were OFF those medications that could affect MEG
activity, such as benzodiazepines, 48 h before recordings.

The study was approved by the Hospital Universitario San
Carlos Ethics Committee (Madrid), and all participants signed

a written informed consent prior to participation.

Table 1 Mean � SD values of the demographic and clinical characteristics of the sMCI and pMCI patients at pre-

condition

sMCI (n = 27) pMCI (n = 27) F-value P-value

Age, years 71.23 � 3.98 74.81 � 3.98 2.6137 0.009�

Gender, females, n 15 18 Fisher’s test 0.577

APOE genotype 12 13 Fisher’s test 0.782

Education, years 8.88 � 4.49 8.6 � 4.49 0.0064 0.937

MMSE score 27.34 � 3.39 25.95 � 3.39 3.2289 0.079

MMSE (post-condition) 26.19 � 4.13 23.65 � 4.13 2.9490 0.092

Direct digit span 6.84 � 2.28 7 � 2.28 0.6555 0.422

Inverse digit span 4.46 � 1.33 4.23 � 1.33 0.1765 0.676

Immediate recall 19.34 � 8.58 11.76 � 8.58 5.5128 0.023�

Delayed recall 7.58 � 4.98 2.76 � 4.98 3.8756 0.055

Rule shift cards 2.16 � 1.34 1.84 � 1.34 0.0143 0.905

VOSP 6.83 � 2.78 6.46 � 2.78 0.0742 0.787

Phonemic fluency 8.2 � 4.25 8.88 � 4.25 0.1792 0.674

Semantic fluency 11.94 � 3.99 11.96 � 3.99 0.4430 0.509

TMTA (time) 82.86 � 46.69 94.36 � 46.69 0.6593 0.421

TMTB (time) 227.35 � 127.84 254.95 � 127.84 0.0194 0.890

Ideomotor praxis 7.29 � 0.83 7.30 � 0.83 0.4103 0.525

BNT 45.8 � 9.01 44.65 � 9.01 0.0730 0.788

BNT (phonemic) 6.33 � 2.83 6.11 � 2.83 0.0425 0.838

Hippocampal volume left 0.0024 � 0.0003 0.0020 � 0.0003 9.7773 0.003�

Hippocampal volume right 0.0025 � 0.0003 0.0022 � 0.0003 5.5714 0.023�

Entorhinal volume left 0.0014 � 0.0005 0.0012 � 0.0005 1.1795 0.284

Entorhinal volume right 0.0013 � 0.0003 0.0013 � 0.0003 1.7137 0.197

Parahippocampal volume left 0.0013 � 0.0002 0.0013 � 0.0002 1.1296 0.294

Parahippocampal volume right 0.0013 � 0.0001 0.0012 � 0.0001 4.6403 0.037�

BNT = Boston Naming Test; MMSE = Mini-Mental State Examination; TMTA = Trail-Making Test Part A; TMTB = Trail-Making Test Part B; VOSP = Visual Object and Space

Perception Battery. P-values for between-group differences were introduced. �P 5 0.05. Age differences were assessed with a Mann-Whitney test. An ANCOVA test, with age as a

covariable, was used for continuous variables and Fisher’s exact test for gender and APOE differences.
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MRI and medial temporal lobe
volumes

Three-dimensional T1-weighted anatomical brain MRI scans
were collected with a General Electric 1.5 T MRI scanner,
using a high-resolution antenna and a homogenization PURE
filter [fast spoiled gradient echo (FSPGR) sequence with par-
ameters: repetition time/echo time/inversion time = 11.2/4.2/
450 ms; flip angle 12�; 1 mm slice thickness, a 256 � 256
matrix and field of view 25 cm].

We used Freesurfer software (version 5.1.0.21) to obtain the
medial temporal lobe volumes, which were normalized with
the overall intracranial volume to account for differences in
head volume over subjects.

MEG recordings

MEG signals were acquired using a whole-head Elekta-
Neuromag MEG system with 306 channels (Elekta AB) at
the Center for Biomedical Technology (Madrid, Spain). Data
were collected at a sampling frequency of 1000 Hz and online
band-pass filtered between 0.1 and 330 Hz.

MEG recordings were obtained at the same time of day in
two different stages: (i) at baseline (pre-condition); and (ii) 24 �
6 months (post-condition). The time between both MEG record-
ings was determined by the time of conversion to Alzheimer’s
disease in the pMCI patients, which was 16 � 6 months. The
MEG protocol consisted of 5 min at resting state with eyes
closed. Subjects were seated comfortably inside a magnetically
shielded room and were asked to relax and to reduce body
movements. The positions of the four-head position indicator
(HPI) coils attached to the scalp, and each subject’s head shape
relative to three anatomical locations (nasion and both preauri-
cular points) was defined using a 3D digitizer (Fastrak). The
subjects’ head movements were continuously monitored by
these HPI coils, and eye movements were monitored by the
vertical electrooculograms with two pairs of bipolar electrodes.
Raw recording data were first submitted to the Maxfilter soft-
ware (v 2.2, correlation threshold = 0.9, time window = 10 s)
to remove external noise with the temporal extension of the
signal space separation method with movement compensation
(Taulu and Simola, 2006). MEG data were automatically
scanned for ocular, muscle and jump artefacts using the
Fieldtrip software (Oostenveld et al., 2011). Artefacts were
then visually confirmed by an MEG expert. The remaining arte-
fact-free data were segmented into 4-s segments (epochs). An
independent component analysis-based procedure was used to
remove the heart magnetic field artefact. Previous to source data
calculation, MEG time series were filtered into theta (4.1–7.9
Hz), alpha (8.1–11.9 Hz), beta (12.1–29.9 Hz), and gamma
(30.1–55.0 Hz) frequency bands with a 1500 order finite im-
pulse response filter with Hamming window and a two-pass
filtering procedure. Because of the high redundancy in MEG
data after spatial filtering (Garcés et al., 2017), we continued
the analysis using only data from magnetometers.

Source reconstruction and
connectivity analysis

A regular grid with 10 mm spacing was created in the template
MNI. This set of nodes was transformed to each participant’s

space using a non-linear normalization between the native T1

image (whose coordinate system was previously converted to
match the MEG coordinate system) and a standard T1 in MNI
space. The forward model was solved with a single-shell
method (Nolte, 2003) with a unique boundary defined by
the inner skull (the combination of white matter, grey matter
and CSF) taken from the individual T1. Source reconstruction
was carried out independently for each subject and frequency
band, using a linearly constrained minimum variance (LCMV)
beamformer (Van Veen et al., 1997). Beamforming filters were
estimated with normalized leadfields, regularized covariance
matrices averaged over trials, and a 1% regularization
factor. These neural MEG sources were anatomically parcel-
lated by dividing the cortex into 72 regions of interest accord-
ing to the AAL atlas (Tzourio-Mazoyer et al., 2002). We
selected the PCA as the representative time series for each
brain area. Finally, the functional connectivity was assessed
using the phase locking value (PLV), a phase synchronization
measure that evaluates the distribution of phase differences
extracted from each of two region of interest time series
(Mormann et al., 2000) and have demonstrated high reliability
across sessions (Garcés et al., 2016).

Statistical analyses

The PLV (post-condition/pre-condition) ratio was calculated to
assess the change between the two conditions of the follow-up.
These values were used to extract the networks that better
differentiate both groups over time. The assessment of signifi-
cant group functional connectivity differences was addressed
relying on the network-based statistics (NBS) (Zalesky et al.,
2010; Fornito et al., 2016), where the units of study were
connected networks (set of nodes for which a link can be
found between any pair of nodes in that network) in topo-
logical space. This procedure was applied independently for
each frequency band. The methodology began by testing func-
tional connectivity ratio differences between groups per each
pair of regions of interest using an ANCOVA test while ad-
justing for the effects of age. The resulting matrix of F-statis-
tics (with same dimension as the original functional
connectivity matrix), was binarized by thresholding the
matrix using a critical value computed with a P-value of
0.005. This binary matrix was split in two matrices attending
to the sign of the differences between groups. A breadth-first
search was used to identify connected components in each
binary matrix. These connected components constituted the
‘candidate networks of interest’, also called a cluster in
graph theory (Rubinov and Sporns, 2010). Candidate net-
works were required to have a minimum size defined by the
obligation of involving at least 10% of the regions of interest
of the model (i.e. seven regions of interest for our atlas model).
Network mass statistics were assessed through the sum of all
F-values corresponding to the network’s links. Then, to control
for the multiple comparison problem, this procedure was re-
peated 5000 times after shuffling the original group’s labels. At
each repetition, the maximum statistic of the surrogate net-
works was kept creating a maximal null distribution that
ensured the control of the family-wise error rate (FWER) at
the network level. The resulting NBS P-value for a candidate
network corresponded with the proportion of the permutation
distribution with network-statistic values greater than or equal
to the network-statistic value of the original data. Only those
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networks that survived the NBS at P 5 0.05 or below were
considered for the subsequent analyses as potential ‘MEG mar-
kers’. As descriptive values for each significant network, we
computed the average functional connectivity (across all links
that belong to the network, i.e. their corresponding strength)
for the functional connectivity ratio (pre- and post-functional
connectivity values). These average functional connectivity
values also calculated for the cognitively normal participants
to obtain a reference value in the pre-condition. These values
were used as functional connectivity marker values for the
subsequent Spearman correlation analysis with neuropsycho-
logical scores and grey matter volumes. In addition, we com-
puted pairwise statistics, between and within-groups, for these
strength values using ANCOVA with age as covariate. Finally,
to explore whether the MEG functional connectivity signatures
could be useful in developing possible biomarkers of
progression, a logistic regression classification analysis with a
leave-one-out cross-validation procedure was carried out using
network functional connectivity strength along with the medial
temporal lobe volumes and the neuropsychological scores
(López et al., 2014b). Results were described in terms of ac-
curacy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). Accuracy represents the
fraction of subjects classified correctly. Sensitivity and specifi-
city represent the fractions of pMCI and sMCI patients cor-
rectly classified, respectively. Finally, PPVs and NPVs represent
the fraction of patients classified as pMCI that were really
pMCI and the fraction of patients classified as sMCI that
were really sMCI, respectively. Statistical analyses were carried
out using MATLAB R2017b (Mathworks Inc) and all tests
were two-tailed.

Data availability

The data that support the findings of this study are available
from the corresponding author, upon reasonable request. All
the algorithms used in the present paper are reported in the
‘Materials and methods’ section and in the Supplementary
material.

Results

Functional connectivity ratio

The functional connectivity ratio was used to extract the

network with a significant difference between both groups

considering the information from both MEG recordings.

The results showed two networks, in the theta and beta

frequency bands, with a significantly diminished functional

connectivity ratio in the pMCI patients when compared to

the sMCI group. Although both frequency bands depicted

the same overall behaviour, the band-specific topography of

the networks differed. The theta band network mainly

involved left frontal and occipital areas and right middle

temporal regions (Fig. 1). On the other hand, the beta net-

work appeared to be more lateralized to the right hemi-

sphere (parieto-occipital regions) and connected with the

left middle frontal gyrus (Fig. 2).

Pre and post-functional connectivity

The next step of the analysis consisted of the assessment of

the specific topology of the functional connectivity ratio

significant networks for each condition and group.

Consequently, we explored the existence of significant dif-

ferences between groups for each condition (sMCI/pre

versus pMCI/pre and sMCI/post versus pMCI/post), and

between-conditions within groups (sMCI/pre versus sMCI/

post and pMCI/pre versus pMCI/post). We found that all

pair-wise comparisons were significant (ANCOVA with age

as covariate, P-value 5 0.05) as shown in Fig. 3 (theta

network) and Fig. 4 (beta network). In addition, when in-

dividual trajectories between both MEG recordings were

depicted, the results showed that most participants behaved

in a similar group manner. The sMCI patients showed an

enhanced functional connectivity with time, whereas the

pMCI individuals showed the opposite behaviour; their

functional connectivity was diminished in the post-condi-

tion. When we assessed between-group comparisons

within each condition, we found that the pMCI patients

showed an enhanced functional connectivity when com-

pared with the sMCI individuals at the pre-condition.

Conversely, when the analysis was carried out with the

functional connectivity values of the post-condition, the

pMCI patients showed a diminished functional

connectivity.

When the assessment of the specific topology of the func-

tional connectivity ratio significant networks was carried

out at the link level, the general profiles of Figs 3 and 4

emerged in both intra-condition analyses (Supplementary

material). The pMCI group showed enhanced ipsilateral

posterior functional connectivity in the pre-condition,

whereas the sMCI group showed higher functional connect-

ivity in the post-condition with a more anteriorized func-

tional connectivity pattern. All links in the pre-condition

displayed enhanced functional connectivity in the pMCI

group when compared to sMCI participants. The opposite

behaviour occurred in the post-condition. On the other

hand, the results for the beta network displayed a similar

behaviour; all links exhibited increased functional connect-

ivity in the pMCI at the pre-condition, and decreased func-

tional connectivity in the pMCI at the post-condition.

Regarding the specific topology of the differences, we

found that pMCI participants depicted higher antero-pos-

terior functional connectivity in the pre-condition, whereas

sMCI patients showed a hypersynchronized antero-poster-

ior brain activity, when compared to the pMCI group,

mostly contained in the right hemisphere.

Additionally, significant functional connectivity ratio dif-

ferences (Figs 1 and 2) were further tested at the network

(strength) and links level with extra ANCOVA tests with

time and Mini-Mental State Evaluation (MMSE)-precondi-

tion score as covariates. These tests were carried out to

distinguish whether the results could be influenced by

these two potentially confounding factors. The results for

the influence of difference in following time showed that 11
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of 12 links of the theta network remained significant (lRO-

lSFGm showed a P-value of 0.081). Similarly, five of six

links of the beta network kept their significance (lSFGm-

rMTG showed a P-value of 0.065). In both cases, the net-

work strength remained highly significant. When the

MMSE was evaluated, all links from both networks and

both network strengths remained significant.

Finally, although this study is a longitudinal assessment

aimed to extract those brain functional connectivity net-

works associated with deleterious changes over time in

MCI patients that progressed to Alzheimer’s disease, we

included a cognitively normal group matched in age, sex

and education with both MCI groups to provide reference

functional connectivity values to better frame inter-MCI

Figure 1 Functional connectivity ratio in theta band (P _ 0.005). Blue links indicate pMCI 5 sMCI. (A) Coronal view; (B) axial view;

(C and D) sagittal view left and right; and (E) circular connectivity diagram. lCalc = left calcarine; lCu = left cuneus; lIFGt = left inferior frontal

gyrus triangular; lIFGt = left inferior frontal gyrus triangular part; lITG = left inferior temporal gyrus; lLingual = left lingual; lRO = left Rolandic;

lSFGm = left superior frontal gyrus medial part; lSOccL = left superior occipital; lSTG = left superior temporal gyrus; rHip = right hippocampus;

rIFGor = right inferior frontal gyrus orbital part; rOccL = right occipital; rParahip = right parahippocampus.

Figure 2 Functional connectivity ratio in beta band (P _ 0.005). Blue links indicate pMCI5sMCI. (A) Coronal view; (B) axial view;

(C and D) sagittal view left and right; and (E) circular connectivity diagram. lSFGm = left superior frontal gyrus medial part; lSP = left superior

parietal gyrus; rCalc = right calcarine; rIFGt = right inferior frontal gyrus triangular part; rLingual = right lingual; rMTG = right middle temporal

gyrus; rPrecu = right precuneus.
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functional connectivity differences. When the complete ratio

network for the cognitively normal group (Figs 3 and 4)

was compared to those corresponding to each MCI group

in the pre-condition, only the beta functional connectivity

(pre) of the sMCI patients showed significant differences

(P-value 5 0.05, ANCOVA test with age as covariate).

The results for the post-condition showed that the cogni-

tively normal group had lower functional connectivity than

the sMCI group and higher functional connectivity than

the pMCI group in the theta band. The result for the beta

post-condition functional connectivity showed that cogni-

tively normal participants presented higher functional

Figure 4 Analysis of the average functional connectivity of the beta functional connectivity ratio network topology for each

condition and group. Left: Horizontal bars denote significant pairwise comparisons (�ANCOVA P-value 5 0.001, ��P-value 5 0.0001). Right:

Evolution of each participant, depicted within their corresponding group, along pre and post conditions. CN = cognitively normal; FC = functional

connectivity.

Figure 3 Analysis of the average functional connectivity of the theta functional connectivity ratio network topology for each

condition and group. Left: Horizontal bars denote significant pairwise comparisons (�ANCOVA P-value 5 0.05, ��P-value 5 0.0001). Right:

Evolution of each participant, depicted within their corresponding group, along pre- and post- conditions. CN = cognitively normal; FC =

functional connectivity.
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connectivity than pMCI patients. In addition, the comparison

between cognitively normal and both MCI groups was per-

formed at the links level. In both frequency bands, the results

showed higher synchronization in the majority of these links

in the pre-condition for the pMCI and hyposynchrony for the

sMCI. The opposite pattern was shown for both frequency

bands and most of the links in the post-condition.

Correlation between functional con-
nectivity and medial temporal lobe
volumes

The correlation analysis between functional connectivity

values and neurophysiological and volumetric scores was

carried out for the whole sample and for each group inde-

pendently. This analysis was performed to explore possible

relationships between our MEG signatures and multimodal

information about participant’s cognitive and structural

status. Considering this aim, we reported any significant

correlation (P 5 0.05) using three different functional con-

nectivity markers, on three different populations and for 24

scores. It is important to note that none of the correlations

survived the FDR correction for multiple testing, but due to

the exploratory character of this section of the analysis, and

the quality of the scatters plots, we consider that the infor-

mation is relevant and useful to the understanding of the

neuroimaging markers. When all participants were

included, we found significant results between the theta

functional connectivity ratio and left hippocampal volume

(rho = 0.351, P-value = 0.017), immediate recall (rho =

0.337, P-value = 0.015) and both MMSE scores (MMSE

pre, rho = 0.283, P-value = 0.049; MMSE post, rho =

0.305, P-value = 0.028). On the other hand, the beta func-

tional connectivity ratio correlated significantly with the left

hippocampal volume (rho = 0.294, P-value = 0.048), the

right hippocampal volume (rho = 0.360, P-value = 0.015)

and the phonemic fluency performance (rho = �0.325, P-

value = 0.019). The correlation analysis within the pMCI

sample showed significant results (Fig. 5) only between the

theta functional connectivity ratio and the inverse digit

span (rho = 0.542, P-value = 0.004). Finally, in the case

of the sMCI group (Fig. 5), the beta functional connectivity

ratio correlated significantly with the right entorhinal

volume (rho = �0.431, P-value = 0.036) and the phonemic

fluency score (rho = �0.401, P-value = 0.042).

In addition to the functional connectivity ratio analysis, we

carried out a similar analysis using the functional connectiv-

ity pre- and functional connectivity post-condition values in

both groups separately. Results are displayed in Fig. 5 (top

for pMCI group and bottom for the sMCI participants). In

the pMCI group, the theta functional connectivity pre-con-

dition correlated significantly with the delayed recall (rho =

�0.442, P-value = 0.027), the theta functional connectivity

post-condition correlated with the entorhinal volume (rho =

0.482, P-value = 0.025), and the beta functional connectiv-

ity pre-condition correlated with the right hippocampal

volume (rho = �0.479, P-value = 0.025). On the other

hand, in the sMCI group the beta functional connectivity

pre-condition correlated with the direct digit span (rho =

�0.448, P-value = 0.022), and the beta functional connect-

ivity post-condition correlated with the phonemic fluency

(rho = �0.458, P-value = 0.019).

Finally, as the follow-up time of the pMCI group corres-

ponded with the time interval where their diagnosis was

changed to Alzheimer’s disease, we considered this time

period as an upper boundary of the conversion time for

pMCI patients. Then, we used a machine learning ap-

proach based on recursive partitioning (Breiman et al.,

1984), using the package ‘rpart’ in R, to study the influence

of the sociodemographic variables, neuropsychological

scores, MRI markers and functional connectivity markers

in order to predict this estimate of the conversion time. The

analysis selected functional connectivity markers together

with medial temporal scores (both entorhinal and hippo-

campal volumes) as best predictors for the time to conver-

sion. The model was able to explain 19.61% of the

variance of the variable time of conversion. The importance

of each variable in the prediction was the following: theta

pre-condition functional connectivity (45%), left entorhinal

(24%), right entorhinal (16%), sex (5%), beta pre-condi-

tion functional connectivity (5%), left hippocampus (3%),

and MMSE pre-condition (2%).

Classification

The classification analysis assessed the utility of the func-

tional connectivity markers to distinguish those patients

who will progress to dementia. This analysis was carried

out for each functional connectivity marker independently

(to rank their individual capabilities as progression markers)

and combined with the neuropsychological scores and the

hippocampal volumes. All results are displayed in Table 2.

Regarding the functional connectivity markers, the best

results for the functional connectivity values taking each

one independently (Table 2), were obtained for the theta

network ratio strength, which showed an accuracy of

83.0%. When both theta and beta network ratio strengths

were used together in the classification the accuracy raised to

94.2%. If these two values were used in combination with

the neurophysiological scores, inverse digit span and TMTA

the accuracy reached 96.2% (the highest across all the clas-

sifications performed). Notwithstanding, the functional con-

nectivity ratio requires two longitudinal points, so its use as

a biomarker is limited. In that sense, both pre- and post-

condition functional connectivity values would be better can-

didates. Using the pre-condition functional connectivity, we

obtained an accuracy of 60% and 72% for the theta and

beta bands, respectively, while for post-condition functional

connectivity the accuracies were 77% for both frequency

bands (Figs 3 and 4). When the pre-condition functional

connectivity was combined with neurophysiological and

volumetric scores, the best accuracy result of 79.2% was

found for the assembly of both pre-condition functional

8 | BRAIN 2019: 0; 1–15 S. Pusil et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

z320/5601465 by guest on 21 O
ctober 2019



connectivity strengths and the direct digit span and delayed

recall scores. In the case of the post-condition functional

connectivity the best result was found for the combination

of both post-condition functional connectivity strength and

the immediate recall and BNT (phonemic) scores, reaching

an accuracy of 86.8% (Table 2).

Discussion
In recent years, the detection of those subjects with an

increased risk of developing Alzheimer’s disease has

become an important issue in clinical neuroscience. Based

on the idea developed in animal models that hypersynchro-

nization (due to a loss of E/I balance) could be a sign of

network disruption and increased brain pathology (Busche

and Konnerth, 2016), we have tested these signs in those

patients at higher risk of progression to Alzheimer’s dis-

ease, namely a sample of patients with MCI. To this end,

we assessed their brain functional networks at two different

times. The sample comprised MCI patients divided into

two subgroups: pMCI and sMCI. These two groups did

differ in age, memory performance and hippocampi vol-

umes, which are three relevant risk factors for developing

Figure 5 Correlations between functional connectivity and neuropyschological and volumetric scores. Top: Significant correlations

(Spearman) between functional connectivity (FC) values and neurophysiological and volumetric scores in the progressive MCI population. Bottom:

Significant correlations (Spearman) between functional connectivity values and neurophysiological and volumetric scores in the stable MCI

population. �, b, FC, pre, post, ratio = theta or beta frequency band functional connectivity at pre-condition stage, post-condition stage, or ratio

(post-condition/pre-condition), respectively.
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Alzheimer’s disease (Lindsay et al., 2002; Albert et al.,

2007; López et al., 2014). According to these features, it

may be argued that the pMCI patients could have already

been predicted for their conversion to dementia. However,

as we know from previous studies (Jack et al., 2013), these

three features alone do not provide enough specificity and

sensitivity for predicting conversion from MCI to dementia.

Several biomarkers are involved during the progression of

the disease, making the individual diagnosis and its forecast

a very complex task (Jack et al., 2016, 2017). Therefore,

tracking the place of each individual subject within the

Alzheimer’s disease continuum is one of the most important

goals to be able to establish an accurate diagnosis and prog-

nosis. To achieve this purpose, it is a priority to gather new

information that could increase our predictive value, as well

as explaining the neurophysiological basis of the disease.

This was the aim of our longitudinal study. We aimed to

characterize the functional changes of the brain along the

Alzheimer’s disease continuum in the same individuals, to

provide new insights in the neuropathological process

driven by the disease. By comparing these two MCI

groups, it has allowed us to propose a model of progression

from MCI to Alzheimer’s disease based on our hyper- and

hyposynchronization findings, called the ‘X’ model (Fig. 6).

The assessment of functional connectivity differences be-

tween both groups of MCI patients was carried out by

means of the functional connectivity ratio between the

functional connectivity values measured at post- and pre-

conditions. The use of the functional connectivity ratio

allowed us to focus on those links that were more affected

by time and showed greater differences between both

groups. We found two networks, one in the theta band

and the other one in the beta band, where the functional

connectivity ratio of the pMCI group was lower than that

of the sMCI group. These networks involved the fronto-

occipital cortex and fronto-temporal regions including the

hippocampus. Moreover, the pMCI group functional con-

nectivity ratio was found to be 51, indicating a decreased

functional connectivity over time. On the other hand, the

sMCI group had a functional connectivity ratio 41, sug-

gesting an increased functional connectivity over time. This

means that when the topologies of the significant networks

Table 2 Classification analysis

Classification

Accuracy Sens Spec PPV NPV Upper B Lower B

Functional connectivity markers

Theta ratio strength 0.830 0.889 0.769 0.800 0.870 0.919 0.702

Beta strength 0.792 0.815 0.769 0.786 0.800 0.892 0.659

Theta pre-FC strength 0.604 0.519 0.692 0.636 0.581 0.735 0.460

Beta pre-FC strength 0.717 0.667 0.769 0.750 0.690 0.832 0.577

Theta post-FC strength 0.774 0.852 0.692 0.742 0.818 0.877 0.638

Beta post-FC strength 0.774 0.741 0.808 0.800 0.750 0.877 0.638

Combination of scores

Theta and beta ratio strengths 0.943 0.926 0.962 0.962 0.926 0.988 0.843

Theta and beta ratio strengths + inverse digit span + TMTA 0.962 0.926 1.000 1.000 0.929 0.995 0.870

Theta and beta pre-FC strengths 0.698 0.741 0.654 0.690 0.708 0.817 0.557

Theta and beta pre-FC strengths + Direct digit span + Delayed recall 0.792 0.778 0.808 0.808 0.778 0.892 0.659

Theta and beta post-FC strengths 0.792 0.852 0.731 0.767 0.826 0.892 0.659

Theta and beta post FC strengths + Immediate recall + BNT (phonemic) 0.868 0.852 0.885 0.885 0.852 0.945 0.747

Accuracy, sensitivity (Sens) and specificity (Spec), negative predictive value (NPV) and positive predictive value (PPV) scores were obtained through a logistic regression analysis

with leave-one-out cross-validation procedure. The confidence interval (upper and lower B) (CI) for the statistic, were calculated using the b approach. BNT = Boston Naming Test;

FC = functional connectivity; TMTA = Trail-Making Test Part A.

Figure 6 The ‘X’ model. The x-axis represents time, and the

y-axis the synchronization (low values at the bottom, high levels at

the top). In the pre-condition (when both groups are diagnosed as

MCI), the pMCI group exhibits higher synchronization values than

the sMCI group, but in the post-condition (when the pMCI patients

have converted to Alzheimer’s disease), they exhibit lower levels

than the sMCI patients. It would be hypothesized that those with

sMCI who finally progress to Alzheimer’s disease will exhibit higher

synchronization values before progressing to the Alzheimer’s dis-

ease condition, when their synchronization will fall (represented by

the dashed line and the question mark). AD = Alzheimer’s disease.
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were assessed at each condition, the pMCI group presented

higher functional connectivity at baseline and a lower func-

tional connectivity after 3 years of follow-up than the sMCI

group. These results mirrored previous findings from our

group, obtained in an independent sample, where we found

an increased fronto-hippocampal connectivity in MCI pa-

tients with high levels of p-tau in their CSF (Canuet et al.,

2015), and an increased fronto-occipital connectivity in

MCI patients progressing to dementia (López et al.,

2014). Additionally, the time-related decrement of func-

tional connectivity in the pMCI could be seen as unusual

as most studies have found an increase in the power of

slow activity in MCI and Alzheimer’s disease patients

(Stam, 2010; Babiloni et al., 2011). However, some studies

that used attentional and memory task-related paradigms,

found a significant reduction in theta functional connectiv-

ity in pMCI patients compared to sMCI patients (Güntekin

et al., 2008; Deiber et al., 2009; Missonnier et al., 2010;

Wang et al., 2014). In addition, theta oscillations are usu-

ally involved in working memory activity (Sarnthein et al.,
1998; Anokhin et al., 1999; Stam, 2000), involving the

medial prefrontal region (Gevins et al., 1997;

Raghavachari et al., 2001), which is typically a brain

region with high amyloid accumulation in Alzheimer’s dis-

ease patients. Furthermore, beta band seems to have a spe-

cial significance in Alzheimer’s disease, especially in the

early stages of the disease (Stam et al., 2003). This band

has been classically related to excitatory activity, as well as

to cognitive processes impaired in Alzheimer’s disease, such

as memory or executive function (Koenig et al., 2005). Our

results agree with those obtained by Koenig et al. (2005),

who described that beta band synchronization was lower in

Alzheimer’s disease than in MCI subjects, and those re-

ported by Koelewijn et al. (2017), which found a decreased

resting state MEG functional connectivity in Alzheimer’s

disease patients compared to healthy older subjects.

Thus, this approach gave us a brain network profile and

a related underlying neurophysiological process predicting

the conversion, or not, to Alzheimer’s disease within the

time period between the two MEG recordings. This idea

was reinforced by the correlation analysis, showing an as-

sociation between the hypersynchronization and the wor-

sening of the cognitive functions.

Regarding the results found in the correlation analyses

with the neuropsychological scores and medial temporal

volumes obtained at the pre-condition, when the whole

sample was taken into account, the functional connectivity

ratio correlated positively with cognitive and structural in-

formation. The higher the increase of post-condition func-

tional connectivity in comparison with pre-condition

functional connectivity, the better cognitive performance

(immediate recall and MMSE pre- and post-condition

scores) and the bigger the hippocampal volumes. This rela-

tionship confirms that functional disruptions of these

fronto-temporal networks may be related to episodic

memory, both anatomically and functionally, which is

one of the main hallmarks of Alzheimer’s disease

(Sperling et al., 2010; López et al., 2014; Canuet et al.,

2015). Notwithstanding, we are aware that these results

should be affected to some extent by a circularity problem.

Indeed, both groups significantly differed in hippocampal

volumes and memory, and the functional connectivity ratio

values were found by exploring the differences between

both groups. To avoid this effect, we computed the correl-

ation analyses at the single population level finding that, in

the pMCI group, the theta functional connectivity ratio was

positively correlated to inverse digit span, whereas the beta

functional connectivity ratio in the sMCI group was in-

versely associated with phonemic fluency and entorhinal

volume. These results mainly suggest that executive func-

tions are more affected with the progression of the disease,

characterized by a reduction of synchronization over time.

Ratios between pre- and post-conditions provide general

profiles of the functional connectivity tendencies across

time. However, to evaluate group differences at each time

evaluated (pre- and post-conditions) we compared func-

tional connectivity profiles separately. In line with the

above, pMCI presents a higher functional connectivity

compared to the sMCI group in the pre-condition, i.e.

when all participants fulfilled the diagnosis of MCI. This

pattern of hypersynchronization has previously been

observed in some MEG studies. For instance, Bajo et al.

(2012) reported that pMCI patients showed higher values

of synchronization over parieto-occipital sensors in the

alpha and beta-1 bands than sMCI patients during the per-

formance of a short-term memory task. López et al. (2014)

found, in a resting-state study, that the pMCI group ex-

hibited a higher synchronization in the alpha band between

the right anterior cingulate and temporo-occipital regions

than sMCI subjects. Finally, Canuet et al. (2015) found

increased fronto-hippocampal synchronization in the pres-

ence of high p-tau in the CSF in patients who converted to

dementia late. This increased synchronization observed in

pMCI patients can be interpreted from two different points

of view. Classically, it has been explained as the result of a

mechanism of compensation, in which additional networks

increase their role to overcome the inefficiency of those

networks that do not work as well (Bajo et al., 2010;

Liang et al., 2011; Clément and Belleville, 2012;

Abuhassan et al., 2014). However, we may speculate that

the profile of hypersynchronization found here, as in other

studies, may be related to the pathological process of

Alzheimer’s disease (de Haan et al., 2012a, b; López et

al., 2014). This view of synchronization as a pathological

sign, not as compensatory, would reflect the hyperexcitabil-

ity of the pyramidal neurons induced by the lack of inhibi-

tory connections caused by the toxic effects of the neuritic

plaques as previously shown in animal models (Cirrito et

al., 2005; Garcia-Marin et al., 2009). Thus, the greater the

neuronal excitability, the greater the likelihood of neuronal

synchronization, which may lead to the establishment of

aberrant relationships between brain areas.

On the other hand, in the post-condition, the pMCI

group showed a significantly decreased functional
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connectivity when compared to the sMCI group. This de-

crease in functional connectivity has previously been

observed in Alzheimer’s disease patients, being considered

as a sign of network breakdown (Wang et al., 2013, 2014;

Garcés et al., 2014; Canuet et al., 2015; Jones et al., 2016),

representing a loss of network robustness and a deviation

from the optimal configuration of the brain dynamic pro-

cessing that occurs during the progression of the disease

(Engels et al., 2015; Zhou et al., 2015). These results

may confirm what we speculated in our previous longitu-

dinal study (López et al., 2014). As the disease progresses,

the hypersynchronization observed in the pMCI group

would cause neuronal death due to excessive calcium-

mediated activity (de Haan et al., 2012a, b), leading to

the characteristic network disruption observed in more

advanced stages of Alzheimer’s disease (Locatelli et al.,

1998; Koenig et al., 2005; Stam et al., 2009).

In addition, the sMCI group behaved in a similar fashion

to the pMCI group, but delayed in time, that is, they

showed less connectivity than the pMCI in the pre-condi-

tion, because their status was probably not as advanced as

the pMCI. However, in the post-condition, this group ex-

hibited an increase in brain connectivity showing the char-

acteristic hypersynchronization pattern of the pMCI

patients at the pre-condition. We can speculate that this

increased synchronization for the sMCI group in the

post-condition may reflect an increased neurophysiological

risk status for developing dementia.

Based on our previous (Bajo et al., 2012; López et al.,

2014) and present functional connectivity findings, we pro-

pose the ‘X’ model (Fig. 6), in which higher synchronization

values in the pre-condition are related to the progression to

Alzheimer’s disease, while the opposite pattern would be

associated with a stable diagnosis of MCI. On the contrary,

lower synchronization values in the post-condition are

related to the Alzheimer’s disease status, as seen in the

pMCI group, whereas higher synchronization values are

related with the sMCI group, that will probably suffer de-

mentia in the future (and will then exhibit decreased syn-

chronization when they become Alzheimer’s disease

patients, as in the pMCI group in the post-condition).

Thus, the ‘X’ model would support the evidence of the dis-

ruption of the E/I balance found in animal model studies,

which would lead to the alteration of the synchronization of

brain networks during the continuum of the disease. Within

this E/I imbalance, it seems clear that the hypersynchroniza-

tion would precede the conversion from MCI to Alzheimer’s

disease, and therefore it could be considered as a biomarker

for the increased risk for the development of dementia. To

test this hypothesis of hypersynchronization as a conversion

marker, future studies should include the followed-up sMCI

subjects who showed this pattern.

The ‘X’ model may be supported by the results obtained

from the correlation analyses, where those pMCI subjects

who exhibited greater structural and cognitive alterations

presented higher pre-condition functional connectivity and

lower functional connectivity post-condition. These results

would confirm the idea that the hypersynchronization is

linked to a cognitive and morphological decline reflecting

a sign of disease and not a compensatory activity. On the

other hand, those sMCI patients that showed lower cogni-

tive scores and lower hippocampal volumes exhibited as

hypersynchronization in both conditions. This finding

could be due to the unknown information regarding the

pathological evolution of these subjects. For this reason,

we hypothesized that those sMCI participants with higher

synchronization values and lower structural and cognitive

scores may be more at risk to finally develop Alzheimer’s

disease in a short period of time.

Finally, in our aim to delineate an integrative approach of

the impact that functional connectivity, neuropsychological

and anatomical information may exert in the progression

from MCI to Alzheimer’s disease, we built a classification

model by using these three variables as factors. It is import-

ant to note that several studies have focused on the conver-

sion from MCI to Alzheimer’s disease from different

perspectives, suggesting the involvement of different fre-

quency bands as markers of conversion (Poil et al., 2013;

Gallego-Jutglà et al., 2014; Al-Jumeily et al., 2015).

Nevertheless, the combination of marker results are very

useful for these models to gain predictive capability

(Modrego, 2006; Antila et al., 2013; López et al., 2016).

Thus, the proposed predictive model with higher classifica-

tion values includes both theta and beta bands, average

functional connectivity ratios and two neuropsychological

scores: TMTA (time) and inverse digit span, which are

often related to working memory, attentional and executive

functions. The inclusion of all of these variables allowed an

accuracy of 96.2% (Table 2). These extra memory cognitive

impairments seem to play a role in the prediction of

Alzheimer’s disease (Chapman et al., 2012; López et al.,

2014). But, in order to provide a classification with a clin-

ical utility, we also created a model based on the pre-con-

dition variables. Thus, we found an accuracy of 79.2% to

discriminate between pMCI and sMCI with the average pre-

condition functional connectivity of the significant networks

in theta and beta bands, the direct digit span and the

delayed recall. These findings suggest that the network dis-

ruption and the neuropsychological scores related to

memory are good predictors to distinguish between groups.

Brain connectivity allows us a better understanding of

brain functioning and how the disease causes network dis-

ruption and consequently affects the cognitive status of the

patients (de Haan et al., 2012a, b). Therefore, the present

work provides a new model to study the evolution of

Alzheimer’s disease and supports the neurophysiological

profiles as an important biomarker to evaluate the alter-

ations caused by synaptic disruption during the course of

this disease and to establish predictions on its course.

The main limitations of our study are as follows: (i) evi-

dence regarding the diagnosis of our sample is based on

neuronal injury (measured by MRI) and clinical criteria,

but we do not provide cerebrospinal markers and/or amyl-

oid accumulation measured by PET. However, we
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established very strict inclusion criteria and clinically fol-

lowed-up all samples, which ensured that only MCI due to

Alzheimer’s disease patients were included in the study. (ii)

We did not carry out a third MEG scan of the sMCI sample,

information that would be needed to test our model.

However, future studies will shed light on the hypersynchro-

nization as a marker of progression from MCI to Alzheimer’s

disease based on their synchronization profiles. According to

our results, we will predict that those sMCI patients with

higher PLV values in the post-condition will progress to de-

mentia in the short or medium term. Another way to test the

‘X’ model would be to see whether patients under pharma-

cological and non-pharmacological interventions would show

different trajectories than the ones predicted in our model. It

is interesting to say that these profiles of synchronization can

also be computed with EEG, making it possible to be tested

in larger populations of elderly subjects.
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