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Abstract
Understanding and diagnosing cognitive impairment in epilepsy remains a prominent 
challenge. New etiological models suggest that cognitive difficulties might not be 
directly linked to seizure activity, but are rather a manifestation of a broader brain pa-
thology. Consequently, treating seizures is not sufficient to alleviate cognitive symp-
toms, highlighting the need for novel diagnostic tools. Here, we investigated whether 
the organization of three intrinsic, resting- state functional connectivity networks 
was correlated with domain- specific cognitive test performance. Using individualized 
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Significance

Although epilepsy is most commonly associated with seizures, 
the disease is more often than not accompanied by non- seizure 
symptoms, such as cognitive deficits. Interestingly, even in focal ep-
ilepsies, the cognitive challenges often extend beyond the seizure 
onset brain area's classical cognitive expression, suggesting a wide- 
reaching perturbation of peripheral networks. In the present study, 
we demonstrate, using source- space electroencephalography, func-
tional connectivity, and graph theory concepts, that the organization 
of neurocognitive brain networks is associated with domain- specific 
neuropsychological test performance. These findings might hold 
clinical relevance with regard to the identification, monitoring, and 
treatment of cognitive symptoms in epilepsy.

1  | INTRODUC TION

Fundamental physiological processes in the human brain, such as 
those supporting control of movement (King et al., 2018), autonomic 
functions (Fan et al., 2012), and cognition (Shine et al., 2019), are 
sustained and regulated by complex interactions both within and 
between functional networks. Thus, network disruptions are likely 
to amount to an important role in mediating physiological dysfunc-
tion and associated behavioral manifestations, such as cognitive 
impairment (Stam, 2014; Uhlhaas & Singer, 2006). Importantly, in 
contrast to the traditional modular paradigm, the hypothesis that 
cognition arises from the activity of large- scale networks (Bressler 
& Menon, 2010; Mesulam, 1990) can account for the presence of 
cognitive dysfunction beyond local structural pathology (Tailby 
et al., 2018). Thus, the impact of functional brain networks on cog-
nitive dysfunction has attained increased focus, both in nonclinical 

(Douw et al., 2011; Langer et al., 2012) and clinical groups (Hassan 
et al., 2017; van Dellen et al., 2015; Vlooswijk et al., 2011).

Epilepsy is considered the epitome of brain network dysfunc-
tion (Kramer & Cash, 2012), putatively caused by hypersynchro-
nous neuronal network activity (Engel et al., 2013). During the past 
decade, the functional connectivity (Bastos & Schoffelen, 2015) 
and graph theory (Behrens & Sporns, 2012) frameworks have suc-
cessfully been applied to delineate network alterations in focal 
epilepsy (FE) using electro-  and magnetoencephalographic (EEG/
MEG) methods (Horstmann et al., 2010; Niso et al., 2015; Vecchio 
et al., 2015). Importantly, concurrent with functional network 
changes, patients with epilepsy are often burdened with cognitive 
impairment (Henning et al., 2019; Lin et al., 2012). Intriguingly, such 
impairment is increasingly understood as a distinct manifestation 
of underlying brain network pathology, rather than being directly 
linked to seizure activity (Helmstaedter & Witt, 2017). This notion 
lines up with evidence that FE often manifests with widespread 
cognitive impairment extending beyond the seizure onset area's 
classical cognitive expression (Oyegbile et al., 2004). Furthermore, 
network disruptions, manifested as interictal epileptiform dis-
charges in EEG peripheral to the seizure onset zone, are associated 
with impaired short- term memory encoding (Ung et al., 2017). Also, 
cognitive dysfunction in FE patients may change over time, possi-
bly reflecting the dynamic nature of brain networks and their dis-
turbance, and may even persist after successful seizure remission 
has been achieved with anti- seizure medication (ASM; Hermann 
et al., 2007).

The idea that cognitive functions are embedded in neuronal net-
works is not new (Geschwind, 1965; Verzeano & Negishi, 1960), and 
today, the cognitive relevance of intrinsic, resting- state networks 
is well established (Ito et al., 2017). Moreover, with the advent of 

EEG source reconstruction and graph theory, we examined the association between 
network small worldness and cognitive test performance in 23 patients with focal 
epilepsy and 17 healthy controls, who underwent a series of standardized pencil- and- 
paper and digital cognitive tests. We observed that the specific networks robustly 
correlated with test performance in distinct cognitive domains. Specifically, corre-
lations were evident between the default mode network and memory in patients, 
the central- executive network and executive functioning in controls, and the sali-
ence network and social cognition in both groups. Interestingly, the correlations were 
evident in both groups, but in different domains, suggesting an alteration in these 
functional neurocognitive networks in focal epilepsy. The present findings highlight 
the potential clinical relevance of functional brain network dysfunction in cognitive 
impairment.
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non- invasive highly specialized experimental technology, such as 
functional magnetic resonance imaging (fMRI), research has begun 
delineating distinct intrinsic neurocognitive brain networks (Deco 
et al., 2011; Uddin et al., 2019). Consistently reported among such 
functionally and spatially distinct networks are the default mode net-
work (DMN), the central executive network (CEN), and the salience 
network (SN). The DMN is anchored in the medial prefrontal and 
posterior cingulate cortices, and the posterior extent of the inferior 
parietal lobule (Andrews- Hanna et al., 2010; Buckner et al., 2008), 
whereas the CEN relies on the lateral prefrontal cortex and the an-
terior inferior parietal lobule reaching into the intraparietal sulcus, 
and the SN on anterior insular and anterior middle cingulate cortices 
(Seeley et al., 2007; Uddin, 2015; Yeo et al., 2011). Together, these 
have been suggested to comprise a triple network model of human 
cognition (Menon, 2011; Seeley et al., 2007; Uddin, 2015), in which 
the DMN and CEN maintain antagonistic activity mediated by the 
SN (Chand et al., 2017; Goulden et al., 2014). These network constel-
lations may sustain a broad spectrum of cognitive functions (Uddin 
et al., 2019), where the DMN is most closely associated with inter-
nally directed and self- generated cognitive processes (Andrews- 
Hanna et al., 2014), the CEN with higher order executive functioning, 
and the SN with an identification of salient information with regard 
to current goal states (Seeley et al., 2007). Cognitive deterioration is 
accompanied by altered connectivity within this large- scale system, 
both in pathological (Agosta et al., 2012; Damoiseaux et al., 2012) 
and normal aging (Chand et al., 2017). In FE, such network reorga-
nization could reflect a compensatory mechanism to sustain an ade-
quate level of cognitive functioning, possibly at the expense of brain 
health and longevity (Helmstaedter & Witt, 2017; Sen et al., 2018).

The investigation of brain networks is methodologically challeng-
ing, albeit fMRI has made significant contributions in characterizing 
spatial properties of functional brain networks (Uddin et al., 2019). 
However, to expand on the temporal dynamic nature of brain net-
works (Fox & Raichle, 2007), the millisecond timescales provided by 
EEG and MEG are necessary for insights into oscillatory activity in 
specific frequency bands associated with differential neuronal pro-
cessing of information (Rossini et al., 2019). Neuronal oscillations in 
different frequency bands have consistently been shown to perform 
differential roles in cognition (for a review, see Lopes da Silva, 2013). 
However, sensor- level electrophysiological connectivity estimates 
are ubiquitously perturbed by noise and volume conduction effects 
(Brunner et al., 2016), and sophisticated source reconstruction meth-
ods (Hassan & Wendling, 2018; Schoffelen & Gross, 2009; Vorwerk 
et al., 2014) are needed to mitigate these effects and, consequently, 
enhance reliability (Besserve et al., 2011). Currently, sensor- level 
EEG/MEG measurements play an important role in epilepsy diag-
nostics, and, with further methodological development, EEG/MEG 
source- space connectivity estimation may in future contribute sig-
nificantly to the refinement of both individualized diagnostics and 
treatment of epilepsy (van Mierlo et al., 2019).

However, the role of distinct intrinsic neurocognitive network 
disruptions and their correlation with the observable cognitive defi-
cits in epilepsy remains unclear, and warrants further investigation. 

The present study aimed to address this issue by examining whether 
the graph theoretical organization of intrinsic neurocognitive brain net-
works during rest can reliably predict performance on a broad spectrum 
of cognitive tests in a cohort of well- functioning chronic FE patients in 
middle adulthood and age- matched healthy controls. The investigated 
networks were constructed with bivariate estimates of source- level 
functional connectivity derived from scalp EEG. With this approach, our 
objectives were to (a) compare the patients and controls on cognitive 
test performance and (b) on graph metrics indexing the organization of 
the DMN, CEN, and SN networks, and (c) correlate cognitive test per-
formance, global and domain- wise, with DMN, CEN, and SN organi-
zation. Considering the well- functioning epilepsy patients included in 
this study, we hypothesized that the overall cognitive test performance 
would not differ between groups; yet, we expected the groups to ex-
hibit subtle differences in network organization, and that the network 
organization metric would predict cognitive test performance, thus 
highlighting the clinical relevance of functional network analysis.

2  | MATERIAL S AND METHODS

2.1 | Participants

Twenty- three patients diagnosed with uni-  or bilateral FE (15 females, 
age 54.7 ± 5.9 years) were recruited to the study from neurological 
outpatient clinics in the Oslo region, Norway, in connection with rou-
tine follow- up visits. In addition, 17 age- matched healthy control (HC) 
subjects (12 females, age 55.9 ± 6.7 years) participated. The HC par-
ticipants were recruited from the FE patients’ social networks, provid-
ing controls with similar socioeconomic background to the patients. 
All FE subjects had used the same ASM for at least 6 months before 
they participated in the study. The patients were all considered to be 
in a chronic phase of epilepsy (duration of epilepsy 24.4 ± 13.7 years). 
Neither FE nor HC subjects had any history of epilepsy surgery, psy-
chiatric disorders, developmental disorders, or any other debilitating 
diseases. The patients’ clinical data, including ASM therapy, etiol-
ogy, EEG/MRI pathology, and focus localization, are listed patient- 
wise in Table 1. Of the seven patients with MRI- verified pathology, 
two had mesial temporal sclerosis, whereas the remaining five had 
other local structural pathology. None had indications of progressive 
neurological disease nor tumor. All patients presented with past or 
present focal seizures. Thirteen of whom also had focal seizures with 
secondary generalization. Neither FE nor HC participants were com-
pensated for their study participation. Ethical approval for the study 
was granted by the Regional Committees for Medical Research Ethics 
–  South- East Norway. Following the Declaration of Helsinki, all par-
ticipants provided informed written consent.

2.2 | Cognitive testing

All participants underwent a standardized cognitive assess-
ment constituent of both paper- and- pencil and digital tests. 
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The assessments were administered and supervised, respectively, 
by a trained clinical psychologist, and covered executive function-
ing, including working memory, selective and sustained attention, 
visual recognition memory, manual reaction time, mental and motor 
speed, and social cognition. The digital cognitive tests were admin-
istered on an iPad (Apple, Inc.) with Cambridge Neuropsychological 
Test Automated Battery (CANTAB®; Cambridge Cognition) soft-
ware. In addition, the participants were asked to report their sub-
jective memory complaints in their daily life (compared to individual 
expectations and ambitions).

Executive functioning was assessed with the One Touch 
Stockings of Cambridge (OTS; CANTAB®) spatial planning/work-
ing memory task, and the inhibition and inhibition/switching tasks 
of the Color- Word Interference Test (CWIT; Delis et al., 2001). 
Attention and working memory were indexed in the verbal mo-
dality with the Wechsler's Adult Intelligence Scale- IV Digit Span 
(DS; Wechsler et al., 2008) task and in the visual modality with 
the Spatial Span (SSP; CANTAB®) task. The Pattern Recognition 

Memory (PRM; CANTAB®) task, a test of visual pattern recog-
nition in a two- choice forced discrimination paradigm, was used 
to probe memory. Manual reaction time was measured with the 
Reaction Time (RTI; CANTAB®) task, which relies on the ability 
to react on a visual cue, whereas processing speed was assessed 
with the word reading task from CWIT. Social cognition was mea-
sured with performance on the Emotion Recognition Task (ERT; 
CANTAB®), which indexes the ability to identify six basic emotions 
in facial expressions. Sustained attention was assessed with the 
Rapid Visual Processing (RVP; CANTAB®) task, a test requiring the 
participant to identify a specific series of digits in a continuous 
visual stream. A total of 17 cognitive test scores were obtained. 
Global level of cognitive functioning was estimated based on the 
participant's performance on the individual tests compared to the 
other participants. Points in the range 1– 4 were allocated per test 
depending on the quartile in which the participant's performance 
resided (below 25th percentile = 1 point; between 25th and 50th 
percentile = 2 points, and so on).

TA B L E  1   Clinical data of the patients

ID Age Sex Duration ASM Etiology
MRI 
pathology

EEG 
pathology Epilepsy focus

1 55 F 21 LEV Structural Yes Yes Temporal, left

2 62 F 20 LEV, CBZ Unknown Yes Yes Temporal, right

3 47 F 11 OXC Unknown No Yes Focal, unknown

4 49 F 24 LTG, CBZ Unknown No Yes Temporal, left

5 45 F 10 LTG Unknown No Yes Temporal, left

6 56 F 49 VP, PRG, LEV Structural Yes Yes Temporal, left

7 62 M 44 OXC, LEV Structural Yes Yes Temporal, left

8 52 M 20 LEV, ESC Unknown No No Temporal, left

9 53 F 16 LEV Unknown No Yes Temporal, right

10 59 M 11 OXC Structural Yes No Temporal, right

11 58 M 44 CBZ, PB Unknown No Yes Temporal, left

12 58 M 38 LEV, CBZ Unknown No No Temporal

13 61 F 13 LEV Unknown No No Focal, unknown

14 54 F 13 None Unknown No Yes Temporal, left

15 64 F 10 LTG Unknown No No Focal, unknown

16 57 M 36 VP Unknown No Yes Temporal, right

17 54 F 12 LEV Unknown No Yes Temporal, left

18 59 M 38 CBZ Structural Yes No Temporal, right

19 46 M 9 LTG Unknown Yes Yes Temporal, left

20 57 F 48 LTG, TPM Unknown No Yes Temporal, right

21 58 F 18 LTG Unknown No Yes Frontal, left

22 51 F 35 LEV Unknown No No Temp.- occip., 
right

23 42 F 22 None Unknown No Yes Temporal, right

Note: Age given in years. Sex: F = female; M = male. Duration of epilepsy is defined as years since the patient's first seizure. The MRI/EEG pathology 
columns denote whether the patient presents with pathological findings. Epilepsy focus reflects the clinical diagnosis made on the basis of all 
available information.
Abbreviations: ASM, anti- seizure medications; CBZ, carbamazepine; ESC, Eslicarbazepine acetate; LEV, Levetiracetam; LTG, Lamotrigine; OXC, 
oxcarbazepine; PB, Phenobarbital; PRG, Pregabalin; TPM, Topiramate; VP, Valproate.
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2.3 | EEG acquisition and electrode localization

EEG was recorded with a BioSemi 128- channel system with a sam-
pling rate of 2,048 Hz during a task- free (i.e., resting- state) paradigm. 
The participant was comfortably seated in a chair, resting with his or 
her eyes closed, but awake, for 4 min. To minimize between- subject 
variation regarding task comprehension, instructions were given 
in written form on a computer monitor, as recommended by van 
Diessen et al. (2015).

High- precision information on the spatial locations of the EEG 
electrodes was acquired using an IO Structure Sensor (Occipital, 
Inc.) scanner device for iPad (Apple, Inc.). From the 3D head model, 
the electrodes were spatially identified by an operator using 
MATLAB (The MathWorks, Inc.) and FieldTrip (ver. 2019- 01- 16, 
RRID:SCR_004849; Oostenveld et al., 2011). For enhanced accuracy 
in the manual alignment of electrode positions and head model (see 
below), the head shape surface was also extracted. For nine subjects 
(five patients and four controls; all females), we were unable to ob-
tain the individual head shape and electrode positions, and instead 
used a set of electrode positions based on the average of the other 
participants.

2.4 | EEG preprocessing and source- space 
functional connectivity

Here, we give a condensed summary of the EEG preprocessing and 
subsequent calculation of source- space functional connectivity. For 
a comprehensive account of the procedures, the reader is referred to 
Hatlestad- Hall et al. (2021).

The EEG data were preprocessed, including downsam-
pling to 512 Hz, band- pass filtering between 1 and 45 Hz, 
and cleaning for ocular and muscle activity, in MATLAB (ver. 
2019b; The MathWorks, Inc.) with functions from EEGLAB (ver. 
2019.1, RRID:SCR_007292; Delorme & Makeig, 2004), ZapLine 
(from NoiseTools; de Cheveigné, 2020), Second Order Blind 
Identification (SOBI; Belouchrani et al., 1993), and ICLabel (Pion- 
Tonachini et al., 2019). The EEG source reconstruction used an 
SPM12 (RRID:SCR_007037) segmentation of the individual T1- 
weighted MRI (Ashburner & Friston, 2005; Huang et al., 2016) to 
construct a three- layer boundary element model (BEM; iso2mesh, 
RRID:SCR_013202; Qianqian Fang & Boas, 2009). The BEM model 
was combined with the digitized electrode positions and a source 
model consisting of a homogenous regular grid of dipoles to ob-
tain the individual lead fields (OpenMEEG, RRID:SCR_002510; 
Gramfort et al., 2010). A spatial filter based on linearly con-
strained, minimum variance beamformers (Van Veen et al., 1997) 
was used for inverse modeling. Finally, source- space functional 
connectivity was defined as the phase locking value (PLV; Bruña 
et al., 2018; Lachaux et al., 1999; Rosenblum et al., 1996) between 
the cortical brain areas of the Automated Anatomical Labeling 
atlas (AAL, RRID:SCR_003550; Tzourio- Mazoyer et al., 2002). PLV 

was computed separately for four distinct frequency bands: theta 
(4– 8 Hz), alpha (8– 12 Hz), beta (12– 30 Hz), and gamma (30– 45 Hz).

2.5 | Network analysis

The network analysis was conducted with functions available 
from the Brain Connectivity Toolbox (BCT; ver. 2019- 03- 03, 
RRID:SCR_004841; Rubinov & Sporns, 2010) and with in- house 
MATLAB code (available upon request). Network nodes were de-
fined as AAL regions and network edges as the PLV estimate be-
tween regions. The three neurocognitive networks were composed 
of distinct sets of nodes, defined in approximate accordance with 
current anatomical definitions of these networks (Uddin et al., 2019). 
The selection of networks for analysis was a priori defined, based on 
the relatively strong consensus regarding their anatomical defini-
tions and their consistently described relevance to cognition (for a 
review, see Uddin et al., 2019). The mapping of the networks to AAL 
regions is presented in Figure 1 and Table 2.

In terms of network analysis, the functional connectivity matrices 
were weighted (PLV) and undirected. The matrices were analyzed under 
a fixed density threshold of 65%, constrained by the requirement of 
the matrices to remain fully connected. As no basis exists on which to 
define an ecologically valid threshold level (Fornito et al., 2012; van 
Wijk et al., 2010), the 65% threshold was selected as it was previously 
demonstrated to maximize the group difference in graph metrics in FE 
(Hatlestad- Hall et al., 2021). To implement this, we first computed the 
minimum spanning tree (MST; Stam et al., 2014; Tewarie et al., 2015) 
of the inverse functional connectivity matrix, and then added edges 
to the MST backbone incrementally by descending weight order until 
the density threshold was reached. For each functional connectivity 
matrix, 100 rewired null models with preserved weight, degree, and 
strength distributions were generated from the dense matrix (BCT: 
null_model_und_sign; Rubinov & Sporns, 2011). These null models 
were processed identical to the empirical network, and the mean 
global network metrics calculated from them were used to normalize 
the corresponding metric for the empirical network.

We calculated the small world index, which was defined as the 
ratio between the network's normalized clustering coefficient and 
normalized characteristic path length (Humphries & Gurney, 2008; 
Watts & Strogatz, 1998):

where CC is the clustering coefficient and CPL is the characteristic 
path length, and the subscripts obs and rand denote the metric of the 
observed (empirical) network and the mean metric calculated from the 
randomly rewired networks, respectively. The terms SW index and 
SW- ness are used interchangeably.

Differences in the overall level of functional connectivity between 
subjects or groups can generate spurious differences in network 

SW =
CCobs∕ CCrand

CPLobs∕CPLrand

info:x-wiley/rrid/RRID:SCR_004849
info:x-wiley/rrid/RRID:SCR_007292
info:x-wiley/rrid/RRID:SCR_007037
info:x-wiley/rrid/RRID:SCR_013202
info:x-wiley/rrid/RRID:SCR_002510
info:x-wiley/rrid/RRID:SCR_003550
info:x-wiley/rrid/RRID:SCR_004841
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metrics (van den Heuvel et al., 2017). In this context, overall functional 
connectivity was defined as the mean PLV in the individual connectiv-
ity matrix, discarding intraregional estimates, and calculated separately 
for each frequency band. We explored possible differences in overall 
functional connectivity for each of the three neurocognitive networks 
in a post hoc group comparison. As these values did not differ between 
groups, the potential effect of overall functional connectivity differ-
ences between groups was disregarded.

2.6 | Statistical tests

Associations between small world (SW) indices of the neurocognitive 
networks and cognitive test performance were analyzed using partial 
linear correlation coefficients, where the effects of the SW indices 
of two other neurocognitive networks were held constant. The par-
tial correlation coefficients were computed separately for the patient 
and control groups. For the significant partial correlations, post hoc 
ANOVAs were performed to test for significant interactions between 
the factors group and SW index of the corresponding network, while 
controlling for the SW of the other two networks. Group differences in 
SW indices and cognitive test scores were analyzed using the Student t 
test. For both the partial correlation coefficients and the t tests, p val-
ues were obtained via a nonparametric permutation test approach 
(Legendre, 2000; Maris & Oostenveld, 2007). For each test, 100,000 
permutations were carried out. The p values associated with partial 
correlation coefficients and t statistics reflecting SW indices were 
corrected for multiple comparisons (across neurocognitive networks; 
three comparisons) with the Benjamini– Yekutieli false discovery rate 
with assumed positive test correlation (FDR) procedure (Benjamini 
& Yekutieli, 2001; Genovese et al., 2002). FDR- adjusted two- tailed p 

values (i.e., q values) below 0.1 (Niso et al., 2015) were considered sta-
tistically significant; however, uncorrected two- tailed p values below 
0.05 were considered trend- significant. Group differences were quan-
tified as the corrected standardized mean difference, with the effect 
size estimate termed Hedges’ g (Lakens, 2013). The directionality of ef-
fects is consistently reported so that positive values of g indicate larger 
values for the FE group than for the HC group. To assess the potential 
effect of epilepsy duration (years since first seizure) on SW- ness and 
cognitive test scores, post hoc two- tailed Pearson correlation analy-
ses were conducted in the patient sample. The group differences in 
the subjective memory complaint measures were analyzed using a chi- 
squared test for comparing proportions. The post hoc test of group 
differences in overall FC was conducted in an identical Student t test 
permutation procedure, as described above. All statistical analyses 
were performed with MATLAB and SPSS Statistics (ver. 26/27; IBM, 
Inc.).

3  | RESULTS

3.1 | Cognitive test performance and self- reported 
deficits

The complete list of group- level performance on the cognitive 
tests is presented in Table 3. Although the control group achieved 
higher mean performance on 76.5% of the test measures, suggest-
ing that the patients were relatively more likely to achieve lower 
test scores, we did not observe significant group differences in 
performance on any single cognitive test, nor on the overall cogni-
tive performance composite. This similarity between groups was 
expected, considering the generally high quality- of- life and work 

F I G U R E  1   Maps of AAL regions included in the neurocognitive networks. Top row: Axial view. Bottom row: Left and right medial view 
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participation among all participants. Yet, 52.2% of the patients, 
and none of the controls, reported subjective memory complaints 
(χ2 = 12.67, p < 0.001).

Among the cognitive test scores, only the social cognition task 
(ERT number of hits) displayed a trend- significant negative correla-
tion with the duration of epilepsy (r = −0.479, p = 0.021, q = 0.378), 
reflecting lower task performance with increasing time since the 
debut of epilepsy.

3.2 | Neurocognitive network small worldness

Interestingly, we observed subtle group differences in SW indices in 
all three neurocognitive networks across several frequency bands 
(Figure 2). In the DMN, patients displayed higher SW indices relative 
to the healthy controls across all frequency bands, with the differ-
ence being most pronounced in the theta band (d = 0.652, p = 0.045, 
q = 0.135), followed by the alpha band (d = 0.480, p = 0.134, q = 0.202).

In contrast to the DMN, for the other neurocognitive networks, 
the direction of the observed group differences was dependent on 
the frequency band. In the CEN, the group differences were most 
pronounced, yet not significant, in the theta (d = −0.313, p = 0.326, 
q = 0.489) and alpha bands (d = −0.312, p = 0.324, q = 0.324), where 
patients displayed relatively lower levels of the SW index. The SN 
showed relatively lower SW indices for the patients in the alpha 
(d = −0.605, p = 0.061, q = 0.182) and beta (d = −0.655, p = 0.043, 
q = 0.129) bands as the largest group differences. None of the ob-
served group differences in the SW index in either neurocognitive 
network retained statistical significance after FDR correction for 
multiple comparisons.

We observed significant negative correlations between the du-
ration of epilepsy and SW indices of the SN in the patients (Figure 3). 
These associations were observed for the alpha (r = −0.550, 
p = 0.007, q = 0.042) and beta bands (r = −0.674, p < 0.001, 
q < 0.001), and were specific to the SN. A trend- significant relation-
ship was evident in the theta band (r = −0.461, p = 0.027, q = 0.108).

3.3 | Correlation of network small worldness with 
cognitive test performance

In both groups, positive and negative robust correlations between 
the levels of the SW index and cognitive test performance were 
observed in all neurocognitive networks and among all frequency 
bands.

3.3.1 | Default mode network

In the DMN (Figure 4), the patient group's SW index of the theta 
band displayed a significant negative correlation of moderate 
magnitude with memory performance (r = −0.658, p = 0.001, 
q = 0.005), and a trend- significant lower magnitude positive cor-
relation with the latency measures in the same task (r = 0.454, 
p = 0.038, q = 0.153). For the former relationship, a significant 
interaction effect between group and SW index in predicting test 

TA B L E  2   AAL regions composing the neurocognitive networks

Brain region Corresponding AAL area
AAL 
indices

Default mode network

Ventral medial 
prefrontal cortex

Superior frontal gyrus, orbital 5, 6

Middle frontal gyrus, orbital 9, 10

Gyrus rectus 27, 28

Anterior cingulate and 
paracingulate gyri

31, 32

Posterior cingulate 
cortex

Posterior cingulate gyrus 35, 36

Posterior inferior 
parietal lobule and 
temporoparietal 
junction

Angular gyrus 65, 66

Supramarginal gyrus 63, 64

Middle temporal gyrus 
and superior temporal 
sulcus

Middle temporal gyrus 85, 86

Parahippocampal cortex Parahippocampal gyrus 39, 40

Precuneus Precuneus 67, 68

Hippocampus Hippocampus 37, 38

Superior/middle frontal 
gyrus

Superior frontal gyrus, medial 23, 24

Superior frontal gyrus, 
dorsolateral

3, 4

Middle frontal gyrus 7, 8

Anterior temporal lobes Temporal pole, middle 
temporal gyrus

87, 88

Central- executive network

Dorsolateral prefrontal 
cortex

Superior frontal gyrus, 
dorsolateral

3, 4

Middle frontal gyrus 7, 8

Inferior frontal gyrus, 
triangular

13, 14

Posterior parietal cortex Supramarginal gyrus 63, 64

Superior parietal gyrus 59, 60

Inferior parietal gyrus 61, 62

Posterior inferior 
temporal cortex

Inferior temporal cortex 89, 90

Dorsal precuneus Precuneus 67, 68

Salience network

Anterior insula Insula 29, 30

Dorsal anterior 
cingulate cortex

Anterior cingulate and 
paracingulate gyri

31, 32

Temporal pole Temporal pole, superior 
temporal gyrus

83, 84

Temporal pole, middle 
temporal gyrus

87, 88

Inferior parietal cortex Inferior temporal cortex 89, 90

Note: All networks are bilaterally mirrored.
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score was observed (F = 4.549, p = 0.040). Together, these re-
sults suggest that higher SW of the DMN is associated with poorer 
memory performance, both in terms of recognition hits and selec-
tion latency.

3.3.2 | Central- executive network

In the CEN (Figure 5), robust partial correlations were evident 
between the SW indices and cognitive test scores in healthy 

controls, but not in patients. In particular, the theta band SW 
index displayed the correlations of moderate magnitude with mul-
tiple test scores in the domains of working memory and executive 
functioning, specifically in the DS sequencing condition (r = 0.730, 
p = 0.001, q = 0.005) and the CWIT inhibition/switching task 
(r = −0.641, p = 0.010, q = 0.020). Thus, better performance on 
tests of working memory and executive functioning was associ-
ated with higher levels of SW in the theta frequency range of the 
CEN, but only in the healthy controls. The association between the 
CWIT inhibition/switching and the SW index was also evident in 

TA B L E  3   Group characteristics and cognitive test performance

Characteristics Focal epilepsy Healthy controls

Group size n = 23 n = 17

Female 65.2% 70.6%

Age, years 54.7 ± 5.9 55.9 ± 6.7

Higher education, years 4.3 ± 3.3 5.3 ± 3.1

Handedness, right- handed 95.7% 94.1%

Subjective memory complaints 52.2% 0.0%

Cognitive test scores Focal epilepsy Healthy controls Hedges’ g

Color- Word Interference Test (CWIT)

Reading speed (s) 23.1 ± 4.5 20.7 ± 3.3 0.59

Inhibition (s) 60.3 ± 18.5 55.9 ± 8.7 0.29

Inhibition/switching (s) 71.9 ± 28.3 60.3 ± 10.1 0.51

Digit Span (DS)

Forward (span length) 9.0 ± 2.5 8.2 ± 1.6 0.39

Backward (span length) 8.0 ± 2.8 8.9 ± 1.7 −0.36

Sequencing (span length) 8.1 ± 2.0 8.4 ± 2.4 −0.12

Spatial Span (SSP)

Forward (span length) 5.9 ± 1.4 5.5 ± 0.8 0.36

Pattern Recognition Memory (PRM)

Correct, hits (%) 81.9 ± 15.4 88.2 ± 8.9 −0.48

Mean latency (s) 2.51 ± 0.72 2.42 ± 1.23 0.09

One Touch Stockings of Camb. (OTS)

Correct first choice 10.7 ± 2.9 10.1 ± 3.6 0.20

Mean latency (s) 28.92 ± 13.21 29.27 ± 12.07 −0.03

Emotion Recognition Task (ERT)

Correct, hits 26.5 ± 5.4 27.8 ± 3.7 −0.28

Median latency (s) 1.87 ± 0.45 1.92 ± 0.64 −0.10

Reaction Time (RTI)

Mean reaction lat. (s) 0.413 ± 0.039 0.407 ± 0.034 0.17

Errors 1.39 ± 2.54 0.77 ± 1.72 0.28

Rapid Visual Processing (RVP)

Detection rate (prop.) 0.956 ± 0.095 0.965 ± 0.095 −0.09

Mean latency (s) 0.51 ± 0.12 0.47 ± 0.10 0.33

Overall cognitive performance

Sum of quartile points 44.0 ± 9.9 46.9 ± 9.5 −0.30

Note: Group means and standard deviations. In the column “Effect size,” blue font color indicates better performance by the healthy controls 
compared to the patient group, and vice versa for red font color.
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the alpha band (r = −0.693, p = 0.005, q = 0.018). Furthermore, re-
lationships were seen between the CEN theta band SW index and 
the composite score for overall cognitive performance (r = 0.680, 
p = 0.005, q = 0.021), CWIT measure of word reading (r = −0.591, 
p = 0.021, q = 0.092), and the latency measure of the social cogni-
tion task (r = −0.704, p = 0.003, q = 0.013). In all of the latter as-
sociations, significant group- SW index interactions were observed 

(overall performance: F = 6.788, p = 0.014; CWIT reading speed: 
F = 6.761, p = 0.014; ERT latency: F = 5.565, p = 0.024). The so-
cial cognition latency score was also associated with the SW in-
dices of the CEN in the alpha (r = −0.593, p = 0.019, q = 0.037) 
and gamma (r = −0.523, p = 0.045, q = 0.060) bands. The latter 
displayed a significant interaction effect between group and SW 
index (F = 5.120, p = 0.030).

F I G U R E  2   Network- wise SW index comparison between groups. An asterisk marks trend- significant group differences (p < 0.05); 
however, none of the observed group differences survived FDR adjustment. The violins represent a kernel density estimate. Box plot 
components: White dot = median; vertical thin gray bar = upper/lower adjacent value; vertical thicker gray bar = first/third quartile; colored 
dots = individual observations 
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3.3.3 | Salience network

In the SN (Figure 6), associations between test scores and SW indices 
were observed for both patients and controls, and were most prom-
inent in the alpha band. In the social cognition task, the patients’ 
scores were positively correlated with task performance (r = 0.456, 
p = 0.038, q = 0.075), whereas the controls’ scores were negatively 
correlated with task latency (r = −0.610, p = 0.016, q = 0.063). 
Moreover, the same directionality pattern was evident in the oppo-
site constellation, although the correlations were weaker. A similar 
pattern was observed for the SW index in the beta band, exempli-
fied by a moderate positive correlation with ERT performance in the 
patients (r = 0.569, p = 0.007, q = 0.029). Also, the alpha band SW 
index of the SN displayed significant or trend- significant associa-
tions with subscores of the CWIT, including reading speed (patients: 

r = −0.530, p = 0.013, q = 0.052), inhibition (patients: r = −0.503, 
p = 0.019, q = 0.077) and inhibition/switching (controls: r = −0.566, 
p = 0.028, q = 0.111), and the composite overall performance score 
(patients: r = 0.578, p = 0.006, q = 0.024). No significant interaction 
effects between group and SW index were observed in the SN.

4  | DISCUSSION

In recent years, EEG- based functional network abnormalities have 
been consistently reported in epilepsy (Horstmann et al., 2010; 
Quraan et al., 2013; Vecchio et al., 2015), and such network- level 
dysfunctions are increasingly considered crucial mechanisms in 
sustaining non- seizure symptoms, such as cognitive impairment 
(Kramer & Cash, 2012; Uhlhaas & Singer, 2006). However, to our 

F I G U R E  3   Correlation between the SW index and time living with epilepsy. A single asterisk marks trend- significant correlations 
(p < 0.05). A double asterisk marks significant correlations after FDR adjustment (q < 0.1) 
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knowledge, their association with distinct measures of cognitive test 
performance in epilepsy has not been highlighted before. Here, we 
investigated whether functional network organization, as reflected 
in source- level EEG and quantified as the SW index, was associated 
with performance on a range of cognitive tests. Specifically, we tar-
geted three well- established neurocognitive networks, that is, the 
DMN, CEN, and SN, and examined to what degree their SW- ness 
would predict domain- specific cognitive performance in middle- 
aged patients with chronic FE and in healthy controls. Interestingly, 
although we only observed minor group differences in cognitive test 
performance and SW- ness separately, we were able to demonstrate 
that associations between them depended on the examined neuro-
cognitive network, the EEG frequency band, and the presence or ab-
sence of epilepsy. Our analyses revealed that SW- ness of the DMN 
was associated with memory performance in patients, whereas the 
CEN organization was closely related to working memory and execu-
tive functioning in controls. For both groups, a significant correla-
tion between the SW index of the SN and performance on a social 

cognition task was evident. Interestingly, for the latter network spe-
cifically, SW- ness across several frequency bands varied in relation 
to the patients' time living with epilepsy. In the following, we discuss 
how these findings relate to the existing literature, and the clinical 
relevance of the relationship between neurocognitive network or-
ganization and cognitive functioning in epilepsy.

4.1 | Neurocognitive networks in epilepsy

The DMN supports a range of cognitive functions, including 
memory (for a review, see Uddin et al., 2019). Altered functional 
connectivity in the DMN or its constituent regions has been 
shown to predict memory deficits in neurological disease such 
as amnestic mild cognitive impairment (Dunn et al., 2014; Wang 
et al., 2013). Importantly, DMN connectivity aberrancies, as meas-
ured by fMRI, have been implicated in the sustenance of epilepsy 
symptoms with regard to seizure propagation (Ofer et al., 2019), 

F I G U R E  4   Partial correlation coefficients between SW- ness of the default mode network and cognitive test performance. Significant 
coefficients are marked with an asterisk. Significant coefficients which survived FDR correction are framed 
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memory (McCormick et al., 2013), and executive dysfunction (Zhou 
et al., 2019). In keeping with this, we demonstrate that increased 
SW- ness of the DMN in the theta band is associated with poorer 
memory performance in patients. The fact that this finding is spe-
cific to the theta band is interesting, as theta oscillations are closely 
related to memory processes (Axmacher et al., 2008; Raghavachari 
et al., 2006; Sauseng et al., 2009). Furthermore, several studies sug-
gest the global network alterations in FE to be relatively prominent 
in the theta band (Horstmann et al., 2010; Quraan et al., 2013). This 
is further supported by the observation in the current study that, 
among the investigated frequency bands, theta showed the most 
robust group difference in DMN SW- ness (Figure 2, top- left), with 
patients displaying the larger SW indices. Interestingly, the associa-
tion between memory and the DMN was not found in the healthy 
controls, suggesting that the SW- ness of the network does not index 
global memory integrity, but rather the degree of deterioration, a 
notion further reinforced by a significant interaction effect between 
SW- ness and group.

Consistent with the established role of the CEN as a neural substrate 
for executive functioning (Markett et al., 2014; Seeley et al., 2007), 
here the network's SW- ness in the theta band robustly predicted per-
formance on tasks relying on mental flexibility and working memory. 
However, in contrast to the DMN, the CEN- specific associations were 
only evident for healthy controls, and not for patients. One potential 
interpretation of this discrepancy may be that the CEN is adversely 
affected in epilepsy, leading to dysfunctional regulation of the network 
in response to current goal states. Indeed, in a study of newly diag-
nosed FE patients, network functional connectivity alterations were 
found selectively in the CEN (Alonazi et al., 2019), suggesting that this 
network might be particularly susceptible to disruption by epileptic 
neuronal activity. However, from our data, this potential disruption 
does not appear to be reflected in the network's SW- ness, which was 
similar across the groups. Conversely, this similarity may suggest the 
presence of compensatory mechanisms in the patients, reducing the 
discrepancy of the network's SW- ness and cognitive performance 
relative to the healthy controls. In this scenario, such compensatory 

F I G U R E  5   Partial correlation coefficients between SW- ness of the central- executive network and cognitive test performance. Significant 
coefficients are marked with an asterisk. Significant coefficients which survived FDR correction are framed 
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measures may suppress the direct relationship between network SW- 
ness and executive functioning observed in the controls. Behaviorally, 
executive dysfunction is prevalent in several syndromes of epilepsy, 
such as FE with frontal or temporal origin (Hermann et al., 1997; 
Oyegbile et al., 2004). Moreover, in a study employing graph theory 
on cognitive test scores in a large cohort of temporal lobe epilepsy pa-
tients, a test of mental flexibility and rapid set switching (Trail Making 
Test B) comprises a central hub in the network of tests (Kellermann 
et al., 2016), implicating that other test results are relatively likely to 
be correlated with it. Following this notion, it is possible that preva-
lent cognitive issues, such as memory impairment (Taylor et al., 2010), 
are caused either directly by disruption of the CEN, or indirectly via 
behavioral executive dysfunction as a mediator. We encourage future 
research to investigate additional characteristics of the CEN in order to 
delineate its role in cognitive dysfunction in epilepsy.

The SN is attributed with the task of identifying the most relevant 
among the continuous stream of internal and external inputs to the 
brain, including emotional information (Kennedy & Adolphs, 2012; 

Menon, 2011; Seeley et al., 2007). In line with this, we observed in 
our data a robust association between the patients’ SW- ness of the 
SN in the alpha and beta bands, and their ability to identify emotions 
from rapid presentation of human faces (the ERT). The higher the 
SW- ness, the more correct responses were made. Moreover, in both 
these frequency bands, patients displayed a trend toward lower 
SW- ness of the SN relative to the controls. These observations, in 
light of the firmly established evidence that patients with epilepsy, 
predominantly with temporal origin, suffer impairment of social 
cognition and facial recognition (Bora & Meletti, 2016; Edwards 
et al., 2017; Monti & Meletti, 2015), suggest that an alteration in the 
SN’s functional organization might amount to a crucial mechanism in 
sustaining these deficits in epilepsy. Furthermore, the regulation of 
alpha and beta oscillations has been found to be involved in face per-
ception (Popov et al., 2012, 2013). However, in our data, the alpha 
band SW- ness of the SN was also predictive of processing speed, 
inhibitory control, and overall cognitive performance in the patients, 
suggesting that SN organization might be implied in a broader range 

F I G U R E  6   Partial correlation coefficients between SW- ness of the salience network and cognitive test performance. Significant 
coefficients are marked with an asterisk. Significant coefficients which survived FDR correction are framed 
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of cognitive domains. Indeed, considering the hypothesis of acceler-
ated cognitive aging, which postulates that cognitive decline in ep-
ilepsy follows a normal trajectory, but at an increased rate (Breuer 
et al., 2016, 2017), the SN might be among several intrinsic brain net-
works which, in a compensatory effort, alters their intra-  and inter-
network organization in response to pathological processes (Bernas 
et al., 2020). Our finding of an association between SW- ness of the 
SN and the patients' number of years living with epilepsy might lend 
further support to this notion.

4.2 | Clinical relevance

Cognitive impairment remains a prominent personal and diagnostic 
challenge in epilepsy, with approximately 70% of patients report-
ing subjective memory problems, independent of age, medication, 
and seizure status (Henning et al., 2019). In objective measures, 
about half of newly diagnosed patients over the age of 15 pre-
sent with abnormal performance in the memory and psychomotor 
speed domains, regardless of seizure type and epileptogenic brain 
area (Taylor et al., 2010). Currently, seizure control with ASM is the 
prioritized aim in epilepsy treatment (Schmidt & Schachter, 2014; 
Sørensen & Kokaia, 2013). However, new etiological models increas-
ingly consider the possibility that cognitive dysfunction arises as an 
independent manifestation of a complex underlying pathology that 
also provokes seizures (Bjørke et al., 2021; Hermann et al., 2008; Lin 
et al., 2012). Thus, in many clinical cases, achieving freedom from sei-
zures will not be sufficient for treating cognitive dysfunction (Witt & 
Helmstaedter, 2017), introducing the need for additional diagnostic, 
monitoring, and treatment tools to be developed. Considering recent 
findings, including those of the present study, clinical application of 
source- level functional network analysis should be considered a 
viable candidate in this regard (Stefan & Lopes da Silva, 2013; van 
Mierlo et al., 2019).

Despite considerable promise, several issues remain to be in-
vestigated with regard to network analysis in a clinical epileptology 
capacity. First, we observed that patients and controls presented 
with an intergroup discrepancy of network- cognition associations. 
This could possibly be an effect of the current small sample sizes 
(23 patients and 17 controls). However, a recent study employing 
fMRI- based effective connectivity concluded that epilepsy is asso-
ciated with stronger connectivity between resting- state networks, 
and weaker connectivity within each network, possibly reflecting a 
compensation mechanism of overactive recruitment of network re-
sources (Bernas et al., 2020). Following this notion, a possible conse-
quence is that networks involved in higher cognitive processes (the 
CEN, in particular) may be predisposed for functional reorganization, 
and thus become less rigorously defined in epilepsy compared to the 
healthy brain. Consequently, it should not be ruled out that epilepsy 
patients and healthy controls differ on the degree of involvement 
of different networks in supporting cognitive functions. Indeed, in 
accordance with the hypothesis of accelerated cognitive aging in 
epilepsy (Breuer et al., 2016, 2017), research suggests that normal 

aging, with a corresponding normal trajectory for cognitive decline, 
is associated with increased distributed network function (Meunier 
et al., 2014). Another issue regards how epilepsy medication affects 
functional network connectivity. To date, few studies have investi-
gated this potentially important relationship. However, there is some 
evidence that carbamazepine and oxcarbazepine are associated with 
changes to the brain's hub organization (Haneef et al., 2015), and 
that topiramate affects network connectivity to a larger extent com-
pared to other medications (van Veenendaal et al., 2017).

Furthermore, the theoretical framework for the clinical applica-
tion of graph methodology remains sparse. Graph theory has primar-
ily developed describing theoretical and synthetic networks, and the 
translation of its concepts to clinically significant characterizations 
of complex biological systems, such as the human brain, is largely 
rudimentary (Douw et al., 2019; Papo et al., 2014). For example, the 
concept of increased SW- ness is, as a rule, associated with higher net-
work efficiency. It reflects the system's ability to achieve integrated 
functioning through facilitation of long- range signal transmission 
between functionally specialized modules of short communication 
paths (Bassett & Bullmore, 2017; Bertolero et al., 2015). However, 
in the context of functional brain connectivity and clinical relevance, 
this notion is one of controversy (Papo et al., 2016). Provided the 
complexity of the human brain, it is perhaps more likely that SW- 
ness constitutes one relevant parameter of network organization, 
and that additional metrics are required for a more comprehensive 
characterization of brain networks (Hallquist & Hillary, 2019).

4.3 | Limitations

For the present study, some limitations should be outlined. First, 
compared to fMRI and MEG, EEG has inherent shortcomings regard-
ing spatial resolution. Here, this limitation was mitigated by employ-
ing high- quality source reconstruction, based on individual anatomy. 
Nevertheless, the investigated resting- state networks were neces-
sarily approximated by predefined composites of AAL regions. The 
selection of network regions was guided by an updated consensus 
definition of the networks (Uddin et al., 2019). Furthermore, elec-
trophysiologically derived functional connectivity is subject to the 
effect of source leakage. If the leakage varies across groups, dif-
ferences can arise in the connectivity matrices, and by extension, 
the graph metrics. While some functional connectivity measures 
eliminate the effects of leakage by removing zero- lag synchroniza-
tion (Bruña et al., 2018; Ewald et al., 2012), these show low test– 
retest reliability, in contrast to PLV, which was used in the present 
study (Colclough et al., 2016; Garcés et al., 2016). Here, the effect of 
source leakage might have impacted the direct group comparisons 
of the SW index; however, its effect on the observed SW cognition 
correlations is presumed minimal. Finally, the current data are based 
on relatively small samples of patients with FE and healthy controls. 
The results should therefore see replication in larger samples. Also, 
due to the low number of participants, the patients were not strati-
fied with regard to clinical factors such as epilepsy focus, ASM type 
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and dosage, and seizure frequency, which have previously been re-
ported to affect network metrics (Haneef et al., 2015; van Dellen 
et al., 2009). It is important to note that the present patient sample 
is relatively homogeneously composed, reflecting people in middle 
adulthood and in a chronic phase of epilepsy.

4.4 | Conclusion

Here, we have demonstrated that graph characteristics of functional 
neurocognitive networks derived from source- level EEG display 
frequency-  and domain- specific correlations with performance on 
cognitive tests. These findings highlight the role of functional brain 
network dysfunction in cognitive impairment, an important issue re-
iterated by revised etiological models suggesting that impaired cogni-
tion and epilepsy may arise independently from a shared pathology.
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