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a r t i c l e i n f o a b s t r a c t 

Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for developing ef- 

fective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cog- 

nitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative imaging features 

by machine-learning requires many cases. While large publically-available datasets of people with dementia or 

prodromal disease exist for Magnetic Resonance Imaging (MRI), comparable datasets are missing for Magne- 

toencephalography (MEG). MEG offers advantages in its millisecond resolution, revealing physiological changes 

in brain oscillations or connectivity before structural changes are evident with MRI. We introduce a MEG 

dataset with 324 individuals: patients with MCI and healthy controls. Their brain activity was recorded while 

resting with eyes closed, using a 306-channel MEG scanner at one of two sites (Madrid or Cambridge), en- 

abling tests of generalization across sites. A T1-weighted MRI is provided to assist source localisation. The MEG 

and MRI data are formatted according to international BIDS standards and analysed freely on the DPUK plat- 

form ( https://portal.dementiasplatform.uk/Apply ). Here, we describe this dataset in detail, report some example 

(benchmark) analyses, and consider its limitations and future directions. 
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. Introduction 

Alzheimer’s disease (AD) is an age-related neurodegenerative dis-

rder that is characterised by progressive dementia, from mild mem-

ry impairment to global cognitive dysfunction and eventually death

 Masters et al., 2015 ). According to the World Alzheimer report in 2019,

here are 50 million people in the world with dementia, which is likely to

ise to 152 million people by 2050 ( Wimo et al., 2003 ). This prevalence

ccentuates the need for reliable biomarkers that are sensitive to the

arly stages of the disease. Although there is currently no cure for AD,

arly detection may enable more effective management and the ability

o prevent or delay dementia . Biomarkers that are accurate, safe, and

ensitive to the specific brain changes in dementia are required to ac-

elerate and increase power for early phase clinical trials. 

Here we consider the challenge of Mild Cognitive Impairment (MCI),

hich is commonly a prodromal state of AD, with a high probability of
Abbreviations: MEG, Magnetoencephalography; MRI, Magnetic Resonance Imagin
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rogression to dementia ( Bruscoli and Lovestone, 2004 ; Kelley and Pe-

ersen, 2007 ). MCI is defined by cognitive symptoms and performance

n cognitive tests, with or without specific biomarker evidence of under-

ying AD pathology ( Winblad et al., 2004 ). Although a prodromal dis-

rder, patients may have subtle brain changes that are identifiable with

euroimaging. Neuroimaging offers a range of potential biomarkers of

tructural, metabolic and functional changes in the brain related to MCI

nd AD ( Cabeza et al., 2018 ; Tartaglia et al., 2011 ; Woo et al., 2017 ). The

ominant form of neuroimaging is Magnetic Resonance Imaging (MRI),

hich is most often used clinically to measure brain structure, particu-

arly the volume of grey-matter in brain regions susceptible to AD, such

s in the medial temporal lobes ( Frisoni et al., 2010 ). However, atrophy

s a late pathological stage of neurodegenerative disease, occurring po-

entially many years after molecular and physiological changes ( Dubois

t al., 2016 ; Han et al., 2012 ; Jack et al., 2017 , 2013 ). While functional

hange can be quantified by functional MRI, the latter is subject to neu-
g; MCI, Mild Cognitive Impairment. 
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ovascular confounds, motion artefacts and low-reliability ( Tsvetanov

t al., 2021 ). 

Magnetoencephalography (MEG) has been proposed as a valuable

lternative tool for functional biomarkers of early-stage AD. MEG has a

etter temporal resolution to measure brain function, is reliable across

essions ( Colclough et al., 2016 ; Garcés et al., 2016 ; Martín-Buro et al.,

016 ) and is not confounded by neurovascular variance. While Elec-

roencephalography (EEG) can also measure neural activity directly like

EG, it does not offer the same spatial resolution, or potential to mea-

ure changes in the brain’s functional connectome (see López-Sanz et al.,

017 ; Maestú et al., 2019 , for a more detailed discussion of the potential

dvantages of MEG for detecting AD). 

MEG offers a large set of potential data features that might differ-

ntiate individuals with MCI from healthy controls. These features may

e limited to specific frequencies of oscillatory activity, specific brain

egions, or the functional connectivity between brain regions. The spa-

iotemporal complexity of MEG is well suited for machine/deep learning

echniques to identify those features that enable the classification of MCI

 Maestú et al., 2015 ). However, these techniques typically need a large

umber of cases to train and test the classifiers. While large datasets of

RI scans of MCI cases have been made available to the community

e.g., Jack et al., 2008 ; Mueller et al., 2005 ), comparable datasets of

EG are required. 

In the recent “BioFIND ” project, funded by the European Union’s

oint Programming For Neurodegenerative Research initiative ( Hughes

t al., 2019 ), we combined 168 MEG datasets from a number of on-

oing dementia projects at the University of Cambridge, England, and

he Centre for Biomedical Technology in Madrid, Spain. Since then, we

ave added further data, nearly doubling the total to 324 participants,

pproximately half of whom had MCI (according to NIA-AA criteria,

lbert et al., 2011 ), while the rest were healthy controls. Participants

ontributed 2–13 min of resting-state MEG, plus a T1-weighted struc-

ural MRI scan in most cases. The MRI can be used to help localise

he cortical sources of the MEG data, and also to compare classification

ased on MEG with that based on the more commonly used structural

RI. 

Here we describe this extended BioFIND dataset, in the hope that

t will allow others to investigate aspects of brain function that dif-

er in MCI patients versus controls, and hopefully identify potential

iomarkers for early AD. While some of the data were reported in

ur previous paper ( Hughes et al., 2019 ), those data were not made

vailable, nor were they in a shareable format. Here we have con-

erted the data to the international BIDS format ( Gorgolewski et al.,

016 ; Niso et al., 2018 ), which includes meta-data on a number of

ther relevant factors, and describe how the data can be analysed

n the DPUK platform ( Bauermeister et al., 2020 ) ( https://portal.

ementiasplatform.uk/Apply ). We report an example preprocessing

feature extraction) and classification approach, to confirm basic data

uality, but emphasize that this is not supposed to be an optimised ap-

roach and that the main aim of this paper is to describe the data in

ufficient detail that others can test their own preprocessing and classi-

cation approaches. 

. Methods 

.1. Participants 

The 324 participants consist of 158 people with clinically diagnosed

CI and 166 controls, recorded at one of two sites: 1) the MRC Cog-

ition & Brain Sciences Unit (CBU) at the University of Cambridge,

nd 2) the Laboratory of Cognitive and Computational Neuroscience at

he Centre for Biomedical Technology (CTB), Madrid. The participants

ere pooled over a number of different projects, each approved by local

thics Committees and following the 1991 Declaration of Helsinki. Par-

icipants consented to the collection and sharing of de-identified data

or research purposes. 
2 
The 68 MCI patients scanned at Cambridge were recruited from spe-

ialist memory clinics at Cambridge University Hospitals NHS Trust. In-

ividuals were diagnosed with MCI after referral for symptoms, mainly

emory problems (i.e., they were not derived by screening of cogni-

ively asymptomatic people). The diagnosis was made in a regional

emory clinic, including ACE/ACER and MMSE tests as standard, with

 significant deficit in memory domain tests. PET and fluidic Biomark-

rs were not used as standard, although all had structural brain imaging

usually MRI in the clinic unless contraindicated, when a CT was oc-

asionally used) and clinical follow-up in support of the diagnosis. By

efinition of MCI, sufferers had functional independence at the time of

iagnosis. MRI was used to exclude other pathologies and to identify

eatures consistent with MCI/AD pathology (e.g. MTL atrophy without

ass lesion, high vascular burden). Patients had no obvious major psy-

hiatric disorder. 

The 91 controls from Cambridge were selected from the population-

erived CamCAN cohort of healthy people from the same geographic

egion ( www.cam-can.org ), chosen to have similar age and sex distri-

ution. The CBU controls are screened to be healthy, i.e., have MMSE

and indeed ACE-R) scores above conventional cut-offs, as well as

ther screening described in the CamCAN protocol paper ( Shafto et al.,

014 ). 

The 90 patients and the 75 controls from Madrid were recruited from

he Neurology and Geriatric Departments of the University Hospital San

arlos. The MCI diagnosis of the patients was determined with interme-

iate probability according to the National Institute on Aging–Alzheimer

ssociation criteria ( Albert et al., 2011 ), i.e., given by a clinician based

n clinical and cognitive tests, self- and informant-report, and in the ab-

ence of full dementia or obvious other causes. For some patients, there

as additional biomarker evidence of atrophy from MRI or long-term

ollow up and genotyping for the APOE 𝜀 4 allele. The diagnosis required

n objective impairment in the memory domain and/or other cognitive

unctions, but a subjective "memory complaint" was not required, and

as a requirement for the diagnosis criteria), they were able to still per-

orm their daily living activities. MRI (T1, T2 and/or FLAIR) was used to

ule out a vascular disorder, and any other type of neurological disease

i.e., tumour, stroke, infection) that could better explain the cognitive

ymptoms. 

The CTB controls had a full neuropsychological assessment to con-

rm normal cognition, and the same type of MRI assessment as that

one in the MCI group, i.e., a radiologist reported MRIs as normal. All

articipants were free of any significant neurological or psychiatric dis-

rder, including vascular damage (Hachinski score equal or less than 4,

lus observation of T2-weighted MRI) and depression (geriatric depres-

ion score equal or less than 5), or any medication with known effects

n MEG activity. 

Note that the MRI (and MEG) data provided here were research scans

ollowing diagnosis, and were not used to inform the diagnosis, though

ther similar (T1-weighted) clinical MRIs may have been used by the

iagnosing clinician. For a subset of MCI patients, we indicate whether

r not they subsequently progressed to dementia ( “probable AD ”) over

ubsequent years, according to their managing clinician. 

The distributions of participant sex, age, education, and score on a

ognitive test for dementia - the Mini-Mental State Examination (MMSE)

 are shown in Table 1 . As expected (since part of the diagnosis), the MCI

roup scored lower on the MMSE, with most below the common clinical

hreshold of 27 ( O’Bryant et al., 2008 ). While MMSE may lack sensitiv-

ty to MCI, its widespread use, approval as a clinical trial outcome and

ultiple language versions make it a suitable screening tool. T-tests con-

rmed that the MCI group was also slightly older and less well educated

n average, though there was considerable variance across patients and

ppreciable overlap between them and the controls, enabling subgroup

atching where relevant to future analyses. 

Note that comparable resting-state MEG data (and T1-weighted

RIs) acquired at the CBU site are also available for approxi-

ately 600 healthy participants (aged 18-88 years) via the Cam-

https://portal.dementiasplatform.uk/Apply
http://www.cam-can.org
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AN website: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/

though see README.txt file below for the subset in both datasets).

hese data could be used with machine learning to characterise healthy

EG data or predict age, which could then be tested on the present

atient data. 

.2. Resting-state Protocol 

The MEG data were recorded while participants were asked to keep

heir eyes closed, instructed to think of nothing specific, but not fall

sleep. The duration of these recordings varied from 2 to 13 min

 Table 1 ). A Wilcoxon rank-sum test showed that the duration of the

edian MEG recording was longer in controls. It is therefore recom-

ended that data are trimmed so that the same duration is used for all

articipants (since levels of drowsiness might increase for longer record-

ngs). 

The precise date and time of recording were scrambled in the

IFF file using the “mne_anonymize ” function ( https://mne.tools/dev/

enerated/commands.html#mne-anonymize ) of the MNE software

 Gramfort et al., 2013 ), to reduce the risk of participant identification.

onetheless, in case they are relevant to the MEG data quality, the time

f day and the year of the recording are provided in the participants.tsv

le. As can be seen in Table 1 , the time of day (Recoding Hour) did not

iffer between patients and controls. The data for patients were recorded

pproximately a year earlier on average than those for controls, though

gain there was large overlap in the Recoding Year ( Table 1 ). While

here is no obvious reason why data quality should change over years,

e also provide empty-room data for each year and site, to enable esti-

ation of changes in ambient noise levels. 

Some of the participants performed other tasks in the MEG scanner

rior to the resting-state phase. The median and range of the duration

in minutes) of such tasks are shown in Table 1 , and did not differ signif-

cantly between patients and controls. However, performing such tasks

ould affect the resting-state data (e.g, make participants more tired), so

an be used as a confounding covariate. The nature of the tasks varied.

or CBU data, sub-Sub0127 to sub-Sub0155 task performed a seman-

ic judgment task on auditory sentences followed by a visual word (as

escribed in Olichney et al., 2008 ), while sub-Sub0156 to sub-Sub0168

erformed an auditory MisMatch Negativity (MMN) task (as described

n Hughes and Rowe, 2013 ). For CTB data, if any participant performed

 task, it was a delayed-match-to-sample task (as described in Serrano

t al., 2020 ). For CBU participants for whom tasks were done before the

esting-state, the scanner was stopped in between, so the resting-state

as a new FIF file. For some CTB participants for whom tasks were

one before the resting-state, the scanner was not stopped, so a single
Table 1 

Summary of data characteristics. 

Data Characteristic Groups 

Controls 

Site (CBU/CTB) 91/75 

Sex (M/F) 82/84 

Age (years) 71.3 (7.0) 

Education (years) 14.5 (4.4) 

MMSE (/30) 28.8 (1.2) 

Recording Duration (seconds) 481.5 (262) 

Recording Hour (24h) 12.8 (2.4) 

Recording Year (calendar) 2013.8 (2.4) 

Previous Tasks (minutes) 0 (23.3) 

Mean of head translation (mm) 1.9 (1.8) 

SD of head translation (mm) 1.1 (1.1) 

Number of bad epochs 4.1 (2.8) 

Numbers shown for Site and Sex; medians (with interquartile range

tasks; means (with standard deviation in parentheses) shown for a

the “participants.tsv ” file. Abbreviations: CBU, Cognition & Brain sc

Mini-Mental State Examination; MCI, Mild Cognitive Impairment; M

3 
IF file was saved, but a new FIF file for the resting-state section was

ubsequently extracted using the MNE “trim ” function. 

.3. M/EEG data acquisition 

MEG recordings were collected continuously at 1 kHz sample rate

sing an Elekta Neuromag Vectorview 306 MEG system (Helsinki, FI)

t both CBU and CTB sites. The MEG data were acquired while partici-

ants were seated inside a magnetically shielded room (MSR). The CBU

SR is made by Imedco and uses single layer mu-metal plates, while the

adrid MSR is made by Vaccumschmelze and has two layers. For the

BU, the average MSR noise level during tuning was 2.3 fT/sqrt(Hz);

or the CTB, it was 2.8 fT/sqrt(Hz) until 2016, and 2.6 fT/sqrt(Hz) after

016. The VectorView system includes two orthogonal planar gradiome-

ers and one magnetometer at each of 102 locations around the head. For

any but not all participants, bipolar electrodes were used to record the

lectro-oculogram (EOG), for vertical and/or horizontal eye movements,

s well as the electro-cardiogram (ECG). When present, these correspond

o EEG channels EEG061 (HEOG), EEG062 (VEOG) and EEG063 (ECG)

see ‘Data records’ section). For a smaller subset of CBU participants, an

dditional 70 channels of nose-referenced, unipolar EEG were recorded,

ut we do not analyse these data here. 

To monitor head position throughout the scan, head position indica-

or (HPI) coils were attached to the scalp and detected by the MEG ma-

hine (energized at frequencies above 150 Hz in CTB and above 300Hz

n CBU). Prior to the scan, a Fastrak digitizer (Polhemus Inc., Colch-

ster, VA, USA) was used to record locations of the HPI coils, in addi-

ion to three anatomical fiducials, for the Nasion, Left and Right Peri-

uricular points (LPA and RPA, respectively), plus approximately 100

oints across the scalp (to help coregistration with the MRI). For CBU

ata, the LPA and RPA refer to pre-auricular points; for CTB data, the

PA and RPA refer to a point anterior to the tragus (photographs of these

oints are provided in the top-level BIDS directory, as shown in Fig. 1 b).

.4. MEG maxfiltering 

In addition to the raw data, we also provide versions that have been

e-noised using Signal Space Separation (SSS) ( Taulu and Kajola, 2005 )

s implemented in MaxFilter version 2.2.12 ( https://imaging.mrc-

bu.cam.ac.uk/meg/Maxfilter_V2.2 ). The full parameters used by Max-

ilter are present in the “log ” files described in the “Data Records ” sec-

ion below, but are summarised here. First, a sphere was fit to the digi-

ised head points, excluding points on the nose, and the coordinates of

he centre of that sphere were passed to MaxFilter. MaxFilter was then

alled twice: first, just to detect bad channels in each data buffer (us-
T/ 𝜒2 -test 

MCI T/ 𝜒2 and p value 

68/90 𝜒2 = 4.04 p = 0.04 

80/78 𝜒2 = 0.01 p = 0.91 

72.9 (6.7) T = -2.07 p = 0.04 

10.8 (5.3) T = 6.70 p < .001 

26.1 (2.8) T = 11.11 p < .001 

180.0 (305) Z = 4.19 p < .001 

12.6 (2.1) T = 1.13 p = 0.26 

2012.4 (2.5) T = 5.37 p < .001 

0 (40.0) Z = -1.15 p = 0.25 

2.3 (2.1) T = -1.59 p = 0.11 

1.2 (1.1) T = -1.03 p = 0.30 

4.7 (3.8) T = -1.74 p = 0.08 

 in parentheses) shown for Recording Duration and Previous 

ll others. Values for each individual participant are given in 

iences Unit; CTB, Centre for Biomedical Technology; MMSE, 

, Male; F, Female; SD standard deviation. 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://mne.tools/dev/generated/commands.html\043mne-anonymize
https://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2
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Fig. 1. (a) Content of Top-level directory (b) Organization of MCIControls directory; (c) Content of participant-specific directories; (d) Content of MRI and MEG 

data directories for each participant; (e) Content of maxfiltered-MEG data directories; (f) Content of sub-emptyroom directory 
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a

ng MaxFilter’s “autobad ” option), and to estimate head position every

econd (using MaxFilter’s “headpos ” option). In the second call (which

roduced the log files below), MaxFilter was passed the list of channels

hat were bad in more than 5% of buffers (for a given participant) and

SS was performed to remove noise from the data (briefly, any spatial

odes that arise from magnetic sources outside a sphere that encom-

assed the sensor array). MaxFilter also recreated data in bad channels

n the basis of the remaining channels (using spherical basis functions).

ote that MaxFilter’s “temporal ” SSS option was not used for further

e-noising, given uncertainty about the best temporal parameters; nor

as MaxFilter’s “mvcomp ” option to correct for head motion, because it

ailed on some participants; nor was MaxFilter’s “trans ” option to align

o a common space, given that this is imperfect and more accurate for-

ard models can be created from the MRIs (see later). For SSS, MaxFilter

eeds site-specific calibration and cross-talk files, which we provide in

he “meg_derivatives ” sub-directory (see below). All other MaxFilter pa-

ameters were kept as their default, as described in the manual available

n https://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2 and output

o the log files below. The MATLAB script used for maxfiltering is also

rovided in the accompanying GitHub directory ( “maxfilter_BIDS.m ” in

ttps://github.com/delshadv/BioFIND- data- paper ). 

The mean and standard deviation of the head translation estimated

y the first call of MaxFilter are shown in Table 1 . Neither differed sig-

ificantly between groups, but these measures of movement could be

sed as additional covariates when analysing the MEG data. 

.5. MRI data acquisition 

T1-weighted MRIs for participants tested at the CBU were acquired

n either a Siemens 3T TIM TRIO or Prisma using a magnetization-

repared rapid gradient echo (MP-RAGE) pulse sequence. The T1-

eighted MRI for participants tested at the CTB were acquired on a

eneral Electric 1.5 Tesla MRI using a high-resolution antenna with a

omogenization PURE filter. 

.6. Data Records 

The data are available for analysis on the DPUK’s analy-

is platform, access to which can be obtained via https://portal.

ementiasplatform.uk/Apply (the data are also summarised on the

PUK cohort website, https://doi.org/10.48532/007000 ). This plat-

orm provides virtual desktops to enable analysis on its servers. The

eason for sharing via the DPUK servers is to ensure that the data can-

ot leave those servers, preventing use by others who have not agreed

o the DPUK’s data usage agreement, and thereby respecting the consent

iven by participants. If use of the data is requested that is not possible

n the DPUK servers, researchers can contact the corresponding author
4 
n order to create and sign a separate “data transfer agreement ” with

onditions on data transfer and usage. 

There is an application form to apply for DPUK access, which once

ubmitted, enables analysis through the above portal. Within a few

ays after submission, an instruction email with the necessary creden-

ials will be sent to users by DPUK. The user then needs to follow

imple instructions and log in using https://portal.dpuk.uksep.ac.uk/ .

oth Windows and Linux operating systems are provided. The paths to

ata on Windows and Linux are “S:\BioFind - BioFIND\BioFIND ” and

/biofind/data ”, respectively (see code availability section below). Both

perating systems also have MATLAB and python available, for exam-

le, and users can request upload of further software, subject to any

icencing. Other data can be uploaded to the server using the file in/out

equest mechanism on https://portal.dpuk.ukserp.ac.uk . 

The data are represented in the Brain Imaging Data Structure (BIDS)

ormat (version 1.4.1; http://bids.neuroimaging.io ), which is an in-

ernational, community effort ( Gorgolewski et al., 2016 ; Niso et al.,

018 ). DPUK required the files to be originally uploaded in XNAT

ormat ( https://www.xnat.org/ ). However, we subsequently converted

hem to the BIDS format using the script called Xnat2Bids.m, which

an be found in the GitHub repository that accompanies this paper

 https://github.com/delshadv/BioFIND- data- paper/ ). 

BIDS describes a way of organizing neuroimaging data by defin-

ng directory structures, a file naming scheme and file formats. The

urrent version of BIDS does not specify how to handle multi-centre

tudies, so we simply combined data from both sites into the same

irectory and identified the site for each participant in the ‘par-

icipants.tsv’ file. The data passed the BIDS validator version 1.8.9

 https://bids-standard.github.io/bids-validator/ ). 

According to BIDS, data are stored in their native format, and meta-

ata are stored in “sidecar ” text files (.json, .txt, .tsv, etc.) to be both

uman- and computer-readable. 

The top-level directory ( Fig. 1 a) contains two separate BIDS directo-

ies: ‘MCIControls’ (approximately 319GB) and ‘TravelBrains’ (approxi-

ately 11GB; see below for information about the travelling brains). The

MCIControls’ directory includes 324 separate sub-directories ( Fig. 1 b),

ne per participant, coded ‘sub-Sub’ followed by four digits for the

nique participant number, matching the ‘participants.tsv’ file (see be-

ow). These directories contain the raw MEG + MRI data; the additional

axfiltered MEG data (see above) are stored in a mirrored format in

he ‘derivatives’ sub-directory; furthermore, empty room data are placed

ithin a directory called ‘sub-emptyroom’. 

.5.1. MCIControls BIDS directory 

In addition to the above sub-directories, the MCIControls directory

lso contains the following files: 

https://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2
https://github.com/delshadv/BioFIND-data-paper
https://portal.dementiasplatform.uk/Apply
https://doi.org/10.48532/007000
https://portal.dpuk.uksep.ac.uk/
https://portal.dpuk.ukserp.ac.uk
http://bids.neuroimaging.io
https://www.xnat.org/
https://github.com/delshadv/BioFIND-data-paper/
https://bids-standard.github.io/bids-validator/
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Table 2 

Fields in participants.tsv file. 

Column title Description 

participant_id Name of participant sub-directory, e.g. “sub-Sub0001 ”

group Either ‘control’ or ‘patient’ (MCI) 

site Either ‘CTB’ (Madrid site) or ‘CBU’ (Cambridge site) 

sex Either ‘F’ (Female) or ‘M’ (Male) 

age Integer years (ranging from 52 to 95) 

MMSE Mini-Mental State Examination 

sImaging ‘MRI’ if MRI available (‘n/a’ if not). Note that 15 participants did not have MRIs available. 

Converters Only applies to patients: those who later progressed to AD: ‘1’ = converted, ‘0’ = not converted, ‘n/a’ = data unavailable 

Recording_year MEG Recording year 

Recording_time MEG data acquisition time of day (hour) 

Edu_years Total years in education (primary, secondary, and tertiary) 

Move1 Mean of head translation during MEG scan (from MaxFilter), relative to initial position 

Move2 Standard deviation of head translation during MEG scan (from MaxFilter) 

Pre_Task Number of minutes of (any) tasks before resting-state recording started 
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• The ‘participants.tsv’ file is a tab-separated text file that lists all the

participants and associated information, as described in Table 2 .

Missing data are indicated by ‘n/a’. 
• The ‘participants.json’ file is a tab-separated text file that describes

all the column titles of ‘participants.tsv’. 
• The ‘dataset_description.json’ is a JSON text file describing the

dataset, including the name, license, authors and how to acknowl-

edge. 
• The ‘README’ file includes other important information about

BioFIND data e.g., the CamCAN IDs of the control participants from

Cambridge, to avoid duplication if a researcher wishes to analyse

both BioFIND and CamCAN datasets. 

.5.2. Participant directories 

As required by BIDS, within each participant’s ‘sub-Sub####’ direc-

ory (where # means one digit) is a sub-directory with a session name

nd number, in this case always ‘ses-meg1’ (since there is currently only

ne scanning session per participant). In this session directory are two

urther sub-directories, ‘anat’ and ‘meg’, which contain the anatomical

RI and MEG data, respectively ( Fig. 1 c). 

The ‘anat’ folder contains the T1-weighted MRIs, stored in com-

ressed (using GNU zip) NIfTI files, i.e, ‘ ∗ .nii.gz’ (where ∗ represents

ome number of text characters). The international NIfTI format is

ead by many free software packages. The file name codes the par-

icipant number (‘sub-Sub####’), session (‘ses-meg1’) and data type

‘T1w’) (where # indicates one digit). Note that the faces on the MRI

mages were removed using the FreeSurfer ( Fischl, 2012 ) function

 https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface ). There is also

 sidecar ∗ .json file, created by hand, which is a text file containing

seful meta-data about the T1 image, such as the anatomical MRI coor-

inate system, and in particular, for MEG coregistration, the manually

efined MRI indices for the Nasion, Left Peri-Auricular (LPA) and Right

eri-Auricular (RPA) fiducials. 

The ‘meg’ folder contains the raw MEG data, in the native “FIFF ” for-

at developed by Neuromag (Elekta Instrumentation AB Stockholm).

his format can be read by several free software packages. This file con-

ains data from all the MEG channels, and additional EEG, EOG, ECG

nd several other miscellaneous channels (of no interest). 

In addition, there are four accompanying sidecar files: ∗ event.tsv,
 channel.tsv, ∗ coordsystem.json and ∗ meg.json ( Fig. 1 d). Although

esting-state does not have any events, the ∗ event.tsv is included to

pecify onset and duration of resting-state recordings within the file.

he ∗ channel.tsv file lists all the channels present in the data, while

he ∗ meg.json file encompasses other information about MEG acquisi-

ion parameters. The ∗ coordsystem.json file contains required informa-

ion about the coordinate system, measurement units and head coil co-

rdinates. These sidecar files were created by the ‘data2bids’ function

 http://www.fieldtriptoolbox.org/reference/data2bids/ ) of the Field-

rip software ( Oostenveld et al., 2011 ). 
5 
.5.3. Derivatives directory 

The BIDS ‘derivatives’ sub-directory contains versions of the data

hat have been processed in some way. As noted above, we used Max-

ilter to remove environmental noise from the raw data and recre-

te bad channels. We provide “maxfiltered ” versions of the data be-

ause MaxFilter is proprietary software. The maxfiltered version of

ach subject’s MEG data is present in a FIFF file (sub-Sub####_ses-

eg#_task-Rest_proc-sss_meg.fif) in the corresponding participant direc-

ory ( Fig. 1 e). The files have the same name as the original raw MEG

ata, except for the additional element “proc-sss ”, which indicates that

he data have been processed with Signal-Space Separation (the method

mplemented in the MaxFilter software). 

In addition to the ∗ proc-sss_meg.json, ∗ proc-sss_channel.tsv and
 proc-sss_event.tsv files described above for the raw data, we also pro-

ide some additional text files that contain meta-data from the MaxFilter

oftware. These are: 

• sub-Sub####_ses-meg1_task-Rest_hpi.txt – the 3D locations (in

MEG space) of the digitized headpoints 
• sub-Sub####_ses-meg1_task-Rest_proc-sss_org.txt – coordinate of

the centre of a sphere (in MEG space, relative to [0 0 0] as the origin

of the helmet) fit to the above headpoints (after excluding points on

the nose) 
• sub-Sub####_ses-meg1_task-Rest_proc-sss_bad.txt – MEG channels

determined as “bad ” for each 10 s segment of the data (and subse-

quently corrected by MaxFilter) 
• sub-Sub####_ses-meg1_task-Rest_proc-sss_headpos.txt – the loca-

tion of the centre of the head every 1 s in quaternions, capturing

head motion throughout the scan. The mean and standard deviation

of head motion (relative to the initial location) have been extracted

and put in the ‘participants.tsv’ file. 
• sub-Sub####_ses-meg1_task-Rest_proc-sss_meg.log – the full log

file output by MaxFilter, containing other information relevant

to SSS. 

The “meg_derivatives ” sub-directory contains calibration

 “sss_cal_ ∗ .dat ”) and cross-talk ( “ct_sparse_ ∗ .fif ”) files that are needed

y MaxFilter (see earlier). There is one each per site, although for

TB there are two calibration files, following a service on the scanner.

he maxfilter_BIDS.m script in the GitHub repository encodes which

alibration file ( “sss_cal_CTB_1.dat ” or “sss_cal_CTB_2.dat ”) applies to

hich CTB participant. 

The derivatives directory also contains an ‘anat’ sub-directory for

very participant that contains another version of their T1-weighted

RI that has been “trimmed ” rather than “de-faced ”. Unlike de-facing,

his trimming keeps the nose, which is a useful feature for MEG-MRI

oregistration when using digitised head-shapes (see Bruña et al., 2022 ,

or more information). The file name codes the participant number

‘sub-Sub####’), session (‘ses-meg1’), data type (‘T1w’) and the word

trimmed’. 

https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface
http://www.fieldtriptoolbox.org/reference/data2bids/
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.5.4. Empty room directory 

Empty room MEG files capture the environmental and system noise,

nd are located in a directory called ‘sub-emptyroom’ in the top level

f MCIControls. This directory comprises different sessions for different

ears and acquisition sites, using the coding ‘ses-YYYYCBU/CTB’ (where

YYY means year of recording), followed by site name. In each session’s

irectory, there is a separate ∗ scans.tsv sidecar file (sub-emptyroom_ses-

YYYCBU/CTB_scans.tsv) containing the date and time of the acquisi-

ion expressed in ISO8601 date-time format (YYYY-MM-DDThh:mm:ss);

he additional ‘meg’ directory within each session includes correspond-

ng ∗ meg.fif, ∗ channels.tsv and ∗ meg.json files ( Fig. 1 f). 

.5.5. Travelling brains 

Because of the potential importance of differences between scan-

ers/recording sites, we also scanned 7 people on both scanners. These

ere young, healthy controls (not included in Table 1 ). Note that MRIs

re only available for 4 of these travelling participants, and those MRIs

ome from different sites. Their MEG data are located in a separate BIDS

irectory named “TravelBrains ”, which includes a “participants.tsv ” file

hat includes separate movement summaries and recording time/year

or each MEG recording (note that in this file, the ‘site’ column refers to

he laboratory in which MRI scan was acquired). Because each partici-

ant has two FIFF files, one per site, there are now two session directo-

ies within each participant directory: ‘ses-megCBU’ and ‘ses-megCTB’.

ach session directory holds ‘anat’ directory (when available) and ‘meg’

irectory, like for the main BIDS repository described above. 

. Example analysis pipeline 

Fig. 2 illustrates one possible analysis approach for using the MEG

ata to classify patients versus controls. The full code is available here on

itHub repository https://github.com/delshadv/BioFIND- data- paper/ ,

pecifically the MATLAB files: feature_extraction_test.m, pre-

roc_beamform_ROI.m, repeated_CV.m and main.m. 

.1. Preprocessing 

The maxfiltered data (in the derivatives directory) were read into

ATLAB 2020b (MathWorks, Natick, MA, USA) using the SPM12 soft-
ig. 2. Paths from raw data to a classifier trained to distinguish MCI vs Control. 

mplitude Envelope Correlation; PSD, Power Spectral Density 

6 
are ( Litvak et al., 2011 ; Penny et al., 2006 ). The first 2 minof data

ere then extracted, in order to equate the data duration across par-

icipants (if we had analysed all data available from every participant,

his would have resulted in MEG features that reflected a longer du-

ation of resting in some participants than in others, introducing a

urther source of between-participant variance, e.g., in their level of

leepiness). It is worth mentioning that the minimal length of data

equired to yield a robust feature in M/EEG studies is still unclear.

 recent study showed intrinsic brain activity can be robustly esti-

ated when derived from relatively short segments of 30 s to 120 s of

esting-state data, regardless of equipment technology and resting-state

aradigm ( Wiesman et al., 2021 ). Nonetheless, future analyses might

ant to maximize the data available from everyone, and conduct ex-

ra analyses that control for potential differences in sleepiness, or in-

rease the minimum slightly, depending on what duration of data is

ptimal. 

Data from the 102 magnetometers and 204 gradiometers were then

own-sampled to 500 Hz and band-passed filtered from 0.5–150 Hz via

 high-pass filter followed by a low-pass filter. This frequency range

s often assumed to reflect the range of oscillatory electrical activity

sed by the brain and detectable by extracranial techniques like MEG.

he filter type was a Butterworth IIR filter with order of 5, as imple-

ented in SPM’s spm_eeg_filter.m function. The continuous data were

hen epoched into 2 s windows, and atypical epochs were automati-

ally marked as “bad ” using the artefact detection function in the OSL

oolbox ( https://ohba-analysis.github.io/osl-docs/ ). This uses a Gener-

lized ESD test to identify “outlier ” epochs, which are likely to contain

oise aritfacts like muscle activity. While more sophisticated techniques

ike ICA could be used to further identify artifactual noise sources, man-

al inspection of such potential noise components becomes laborious

ith the large numbers of participants as here, and, as noted in the

ethods, EOG and/or ECG data were not available on all participants

o help automate identification of ocular and/or cardiac artifacts. Note

lso that eyes were closed, which will abolish blinks and minimize sac-

ades (though residual eye movements are likely to remain; Mannan

t al., 2018 ; Shimazono et al., 1965 ), while the dominant power in ECG

s typically around 1 Hz, which is below the lowest frequency analysed
Abbreviations: ROI, Region Of Interest; SVM, Support Vector Machine; AEC, 

https://github.com/delshadv/BioFIND-data-paper/
https://ohba-analysis.github.io/osl-docs/
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Table 3 

Mean of 10-fold cross-validation performance across 100 permutations (with 

standard deviation in parentheses), using normalised power across all sensors 

in Alpha and Beta range for all N = 324 participants, as a function of covariates 

used (see text for definition of type 1 and type 2 covariates). 

Type of Covariate No. of Features Accuracy (%) 

No covariates 712 67.8 (1.4) 

Type 1 covariates 712 66.9 (1.4) 

Type 1 + 2 covariates 712 59.4 (1.4) 
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1 We appreciate that some of these could still have conceivable relationships 

with AD - for example, AD could conceivably affect head motion, or the number 

of bad epochs. Note also that, because we only considered the first 2 min of 

data, the total duration of recording for each participant in Table 1 could not 

affect the MEG features, so was not used to adjust the data. 
As shown in Table 1 , there was trend for the number of bad epochs to

e slightly greater in patients than in controls (note that, since the num-

er of bad epochs is a property of the preprocessing approach, rather

han a property of the raw or maxfiltered data, that number is not in-

luded in the participants.tsv file). While data from bad epochs were

xcluded, the number of bad epochs could also be used as a further con-

ounding covariate to adjust for overall data quality. 

The identification of bad epochs is influenced by the epoch length,

hich needs to be long enough to capture at least one cycle of the lowest

requency of interest. The number of cycles also affects the accuracy of

ower estimation ( Cohen, 2014 ). The lowest frequency analysed here

as 8 Hz, meaning that our 2 s epochs allowed 16 cycles. 

The remaining “good ” epochs were used to calculate power spectral

ensity (PSD) for each channel every 0.5 Hz (using MATLAB’s ‘peri-

dogram’ function), which was then averaged over epochs. Given that

he absolute power depends on the position of the cortical sources rela-

ive to the sensors (i.e., head position), we normalised power by dividing

ach channel’s PSD by its mean power across frequencies and channels.

iven the different scaling of the magnetometers and gradiometers, this

ormalisation was done separately for each sensor-type. For each chan-

el, we then averaged the normalised power over frequencies in the

ange 8-12 Hz and 13–30 Hz, reflecting the distribution over the scalp

f power of the “Alpha ” and “Beta ” rhythms, respectively, given that

revious studies have shown one or both to differ in dementia patients

 Baker et al., 2008 ; Jelic et al., 2000 ; López-Sanz et al., 2016 ; Michels

t al., 2017 ). 

The distribution of normalised Alpha and Beta power over the 102

agnetometers and 204 gradiometers was then used to classify patients

ersus controls (see below). For comparison, we repeated this classifica-

ion using power estimates for the cortical sources, estimated from the

ensor data and the MRI, as explained in the next section. 

.2. Source reconstruction 

Given that the MEG signal depends on the position and geometry

f the head, a more accurate method to estimate brain activity is to

onstruct a “forward ” model ( Bertero et al., 2021 ; Brette and Destexhe,

012 ; Henson et al., 2009 ; Mosher et al., 1999 ). This model specifies

ow the magnetic fields produced by electrical dipoles in the cortex

ppear at the sensors. It requires the location and orientation of each

ipole, the shape of the cortex and skull (extracted from an MRI) and

nformation about the position of each sensor relative to the head. This

odel can then be inverted to estimate the cortical currents, subject to

dditional constraints for this “ill-posed ” inverse problem. 

The first step in this source reconstruction is to coregister the MRI to

he MEG data, which we did by minimising the error between the digi-

ised head-points and the scalp surface extracted from the MRI. We did

his using SPM12, after excluding points on the nose, since the nose is

ot always captured in the MRI (the residual error in the 3 anatomically

efined fiducials can be used as an independent measure of coregistra-

ion accuracy). Note that this meant excluding the 15 participants for

hom no MRI is available. 

Once coregistered, we modelled 3559 cortical sources every 8mm

ithin the brain, and estimated how a dipolar source at each location,

riented normal to the cortical surface, would appear to each sensor, us-

ng a single-shell “boundary element ” model. We then estimated those

ources using a scalar, Linear-Constrained Minimum Variance (LCMV)

eamformer implemented in the OSL toolbox. This was estimated from

he sensor time-series (from all “good ” epochs) across a broadband of

requencies from 0.5 to 48 Hz. Each source was then assigned to one of

8 regions of interest (ROIs) based on ( Colclough et al., 2016 , 2015 ), and

rincipal component analysis was used to extract a single representative

ime-series per ROI. Before LCMV beamforming, the two sensor types

.e., gradiometers and magnetometers, were normalised to have equal

ariances over time so that they can contribute equally to the beam-

ormer calculation. This was done using “osl_normalise_sensor_data.m ”
7 
unction from the OSL toolbox. Analogous to sensor features, Alpha and

eta power were then calculated for each ROI, to produce 38 features

er participant. 

For the final type of feature, we also estimated functional connectiv-

ty between the 38 ROIs, using a standard approach in the OSL software.

riefly, each ROI’s time-series was first orthogonalized with respect to

ll others using symmetric orthogonalization ( Colclough et al., 2015 ),

o reduce the influence of residual leakage between sources. A Hilbert

ransform from 8-12 Hz was then applied to the ROI time-series, and

he amplitude envelope was calculated. This was then downsampled to

 Hz, and the Pearson correlation coefficient was estimated between

ll pairs of ROIs, producing (38 × 37)/2 = 703 estimates of functional

onnections. 

.3. Confounds and classification 

The data features were adjusted for various potential confounds in

able 2 by regressing out linear effects of each covariate (after missing

alues of these covariates were first imputed using their mean value). 

The sensor or source features derived above were used to train and

est a Support Vector Machine (SVM) ( Cortes and Vapnik, 1995 ) us-

ng cross-validation with 10-folds, and performance averaged over 100

ermutations. Since the number of patients and controls differed, per-

ormance was assessed by “balanced accuracy ”, i.e, the average of the

ercentage of patients classified correctly and the percentage of controls

lassified correctly. 

. Results 

In the first analysis, we examined MCI-Control classification perfor-

ance when using all sensors, i.e., 712 features per participant, con-

isting of normalised Alpha and Beta power across the 306 channels.

ore specifically, we compared classification as a function of which co-

ariates from Table 2 were removed from the data before classification.

aseline performance was 67.8% when using no covariates ( Table 3 ). 

The potential covariates from Table 2 can be divided into at least two

ypes. The first type is variables that may differ between patients and

ontrols, and may affect the MEG features, but would not be an obvious

r direct consequence of AD. These variables should be covaried out,

o that classification is not based on an independent, accidental prop-

rty. These included recording site, time of day of recording, duration of

ny previous tasks, number of bad epochs and head motion (mean and

tandard deviation of translation). 1 When adjusting the data for these

ypes of potential confound, performance dropped to 66.9% ( Table 3 ),

ut was still clearly above chance (50%). 

The second type of covariate is those that could affect MEG features,

ut could also be causally related to AD. Here, these were age, sex and

ducation. The rationale for covarying out these covariates is less clear.
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Table 4 

Mean of 10-fold cross-validation performance across 100 permutations (with 

standard deviation in parentheses), using normalised power across all sensors 

in Alpha and Beta range for all N = 309 participants with an MRI, as a function 

of MEG feature. 

MEG Feature No. of Features Accuracy (%) 

Sensor power 712 66.1 (1.3) 

Source power 76 65.2 (1.4) 

Source connectivity 1406 64.8 (1.3) 
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5

o take the example of education: the level of education could affect

hether someone develops AD later in life (e.g, owing to other lifestyle

hoices). Therefore, when adjusting the MEG data for education, one

ould remove effects in the MEG data that are truly related to AD. 2 It

s therefore informative to consider classification results both with and

ithout adjusting for this second type of covariate. When adjusting for

his type of covariate, in addition to the first type above, performance

ropped to 59.4%. For reasons stated above, this drop in classification

oes not necessarily mean that MEG features are only very weakly re-

ated to AD, and ideally independent justification would be needed be-

ore adjusting for variables like these. 

In a second set of analyses, we compared classification performance

ased on different types of MEG features: sensor power relative to source

ower, and source power relative to source connectivity (see Methods).

or these analyses, we only used the 309 participants who also had an

RI (to enable more accurate source localisation), and we adjusted for

he first type of covariates listed in the previous set of analyses. As shown

n Table 4 , classification based on source power or source connectivity

as worse than that based on sensor power. While this suggests that

stimating cortical sources does not improve classification in this case,

t is important to note that this case is specific to the 38 ROIs used here,

nd the specific measure of connectivity. It is also important to note

hat the total number of MEG features varied considerably across analy-

es. It is possible that different approaches to source reconstruction (e.g.

reater number of ROIs) and different measures of connectivity (e.g.

hase-locking value, Pusil et al., 2019 ) would produce higher classifica-

ion performance (as might the use of other types of classifier). Again,

ur purpose is not to claim this is the best classification possible, nor

hat we have chosen the best method possible, but to illustrate the type

f analyses one could do on this dataset, and provide some benchmarks

or future analyses. 

. Discussion 

The main purpose of the present paper is to describe the largest

urrently-available MEG resting-state data for the study of early demen-

ia. This will hopefully enable scientific and clinical inferences beyond

hose possible from previous MEG studies, which have tended to fo-

us on relatively small samples ( Yang et al., 2019 ), and/or been unable

o share their data in order to compare analyses. We report results of

ne reasonably standard pipeline for preprocessing the MEG data and

lassifying participants on the basis of their MCI status, but emphasize

hat we do not claim this is the best pipeline; our purpose was just to

how that classification (60-68%, depending on covariates) was at least

bove chance (50%), comparable with previous studies using resting-

tate MEEG data and similar classifiers ( Dimitriadis et al., 2018 ; Hughes

t al., 2019 ; Pineda-Pardo et al., 2014 ; Yang et al., 2019 ), and to provide
2 MMSE is arguably an extreme case of this type of covariate, since not only 

re MMSE scores largely a consequence of AD, but they are also part of the 

nformation used by clinicians to define the MCI label in the first place. There- 

ore adjusting for MMSE is likely to remove the majority of true differences in 

rain activity that are related to AD (i.e, MMSE and MEG features are correlated 

onsequences of the same cause). 
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8 
enchmarks for future analyses on these data. While we hope that fu-

ure analyses will achieve higher classification levels, we do not expect

lassification to ever reach 100%, because there are sure to be errors in

ome of the class labels, since these are based on a clinician’s diagnosis,

hich is imperfect. For example, not all of the MCI group are likely to

ave AD pathology ( Petersen et al., 1999 ), while a proportion of older

ontrols may have latent AD pathology without symptoms. 

Future alternative approaches include, for example, using other

ypes of MEG features (e.g., different frequency bands, different mea-

ures of connectivity), other types of machine learning (e.g., random

orest, ensemble classifiers, deep learning) and improved methods for

re-processing (de-noising) the MEG data (e.g., using ICA to remove car-

iac and other artefacts), or for reconstructing the cortical sources (e.g.,

mproved forward models or inverse methods). Future studies could also

istinguish between the subset of MCI patients who subsequently devel-

ped probable AD (converters), or further explore the role of potential

onfounds like education. Furthermore, there are aspects of the dataset

hat we did not use, such as the empty-room data (to better estimate

EG noise) and the travelling brains data (to better explore potential

ite differences); and while we used the T1-weighted structural MRI to

ssist source localisation, the MRI scans could also be used for classifi-

ation, to compare accuracy with that achieved by MEG, or combined

ith the MEG in multi-modal classification. 

.1. Caveats 

There are several limitations of the current dataset. First is the fact

hat the data come from two different sites. While this can be seen as an

ttraction, in terms of testing the generalisation across sites that would

e necessary if MEG were to be used across the world to aid dementia

lassification, there are multiple types of site differences. Although the

EG machine model was identical, individual scanners differ in their

oise levels (e.g, sensor tuning) and their magnetic environment (e.g,

n terms of MSR effectiveness). Ideally, we would be able to provide

ore empty-room recordings that were closer in time to each partici-

ant’s recording (as recommended by Gross et al., 2013 ; Pernet et al.,

020 ), but this was not possible. Furthermore, though following similar

nternational guidelines, the precise definition of “MCI ” is likely to differ

cross clinicians in the two countries, as did the recruitment method and

herefore likely nature of controls (see “Participants ” section above for

ull details). Though the resting-state instructions were very similar, the

tate of the participants varied, since some had performed tens of min-

tes of cognitive tasks prior to resting. While we provide this number of

inutes, it is possible that different tasks had different levels of fatigue,

tc, which will contribute to noise in the data. The groups also differ in

ther respects, such as age and education. While we provide information

n, and described potential adjustment for, as many of these potential

onfounds as we can, it is possible that there are other confounding

ovariates on which we do not have data. Though more homogeneous

ata could be achieved from matched sampling in individual studies,

he likely heterogeneity in real-world clinics makes it important to also

tudy the potential effects of these confounding variables. Other more

pecific limitations are that 15 participants are missing MRI data; 41

atients are missing information about subsequent AD progression; and

 participants only had 2 min of data. 

.2. Future 

While this is the first public release of the BioFIND dataset, we in-

end to continue to grow the repository in future. We already know of

everal projects at both sites that are collecting new MEG data on MCI

nd controls, and would welcome MEG data from other sites too. Given

he growing realisation of the importance of “big data ” for goals like

ementia detection, future additions to the BioFIND dataset may come

rom larger, more homogeneous projects, and it may be helpful to add
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urther sub-groupings (eg “project ” in addition to "site"), to help classi-

ers to generalise across projects. We would also like to follow-up the

urrent participants to update those (including controls) who later con-

erted to a dementia diagnosis. Furthermore, we could add data from

articipants with later stages of dementia, e.g. a more confident (clini-

al) diagnosis of AD, as supported by other biomarkers. Though our aim

s to evaluate the ability of MEG to detect early stages of the disease,

aving late-stage cases is likely to help train classifiers (assuming they

ave the same MEG signatures; though see Pusil et al., 2019 , for possible

onlinear changes as the disease progresses). 

.3. Code availability 

The custom-written code to implement all validation anal-

ses is available on GitHub ( https://github.com/delshadv/

ioFIND- data- paper ). If one analyses data through DPUK there is

o need to clone the GitHub repository since all code and data have

een already uploaded there and are ready to use. Some imaging anal-

sis toolboxes, written in MATLAB, which are necessary to reproduce

he result of this paper, are also available on DPUK e.g., OSL, SPM,

nd Fieldtrip. Any other software and/or toolboxes can be provided by

PUK if requested. Please note that OSL is a Linux-based toolbox thus,

o obtain necessary information on how to use Linux through DPUK

lease read “instructions.md ” in the GitHub repository or ask DPUK. 

Note that there is no internet connection on DPUK, so any file

hould be accessed by an in/out file request on https://portal.dpuk.

kserp.ac.uk in case one needs to have any other resources, such as

ther GitHub repositories, libraries, etc. 

The starting point to run validation analysis is /biofind/

ata/Code/BioFIND-data-paper/preproc_beamform_ROI.m script. How-

ver, there is a MATLAB script named “main.m ”, which includes all steps

n one place. 

For those who wish to use our preprocessing and feature extraction

teps, e.g., who are only interested in the machine learning aspect, all

EG features are also available in comma-separated value (.csv) files in

he “derived ” directory within the GitHub repository. These are: “Sen-

or_RP.csv ” (relative power in sensor space), “Source_RP.csv ” (relative

ower in source space) and “AEC.csv ” (amplitude envelope correlation).
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