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Spaceflights expose crew members to adverse conditions such as microgravity, isolation, or radiation.
Although it has been well observed that these factors affect the human brain organization and its
physiology, their clinical and behavioral consequences are poorly understood.

In particular, microgravity seems to be affecting the vestibular system and the cerebrospinal fluid
distribution of the body [1]. Moreover, several sensorimotor deficits have also been reported during
spaceflights [1]. Nevertheless, the relationship between microgravity and these deficiencies in the
sensorimotor cortex has not been stablished yet. To this end, electroencephalography (EEG) seems
like a promising technique to investigate it.

With the aim of studying the impact of microgravity on the body on Earth, the head-down bed rest
(HDBR) 6° tilt position has been stablished as one of the most used experiments. However, this
analogue faces some limitations [2], that might suggest it is not as much as reliable as we thought it
was. To elucidate this, a power comparison between actual microgravity and HDBR is made here.
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5 male ISS astronauts (NEUROSPAT) [4]

9 EEG recordings (3 pre, 2 in-flight, 4 post)
21 male participants (HDBR) [3]

5 EEG recordings (1 pre, 3 HDBR, 1 post)
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Figure 3. Brain figures represent the Whole Brain Network
areas with higher statistical power differences in the β
band when comparing ROIs in the NEUROSPAT experiment.
(A) Pre-flight vs. In-flight. (B) In-flight vs. Post-flight. The color
bar is displayed as a family-wise corrected significance level
of q value > 4, corresponding with a minimum p value of 0.05.
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Figure 1. Statistically significant results between conditions in the HDBR experiment. The bar graphs depicts the mean ± SEM (Standard Error Mean) of the corresponding
network and frequency band for each condition (*p < 0.05, **p < 0.01, ***p < 0.001). (A) WBN δ power increase during HDBR vs. pre-HDBR and vs. post-flight. (B) DMN δ power
increase during HDBR vs. pre-HDBR and vs. post-HDBR. (C) SAL δ power increase during HDBR vs. pre-HDBR and vs. post-HDBR and between pre-HDBR and post-HDBR. (D) WBN θ

power increase during HDBR vs. pre-HDBR. (E) DMN θ power increase during HDBR vs. pre-HDBR. (F) SAL θ power increase during HDBR vs. pre-HDBR.

More data/experiments needed

Figure 2. Statistically significant results between conditions in the NEUROSPAT experiment. The bar graphs
depicts the mean ± SEM of the corresponding network and frequency band for each condition. β power increase
in (A) WBN during in-flight vs. pre-flight and vs. post-flight, (B) DMN during in-flight vs. pre-flight, (C) SAL during in-
flight vs. pre-flight and vs. post-flight. (D) SAL θ power decrease during in-flight vs. post-flight.
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